These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. The response of Arctic vegetation and soils following an unusually severe tundra fire. Bret-Harte MS; Mack MC; Shaver GR; Huebner DC; Johnston M; Mojica CA; Pizano C; Reiskind JA Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120490. PubMed ID: 23836794 [TBL] [Abstract][Full Text] [Related]
8. Press-pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics. Collins SL; Ladwig LM; Petrie MD; Jones SK; Mulhouse JM; Thibault JR; Pockman WT Glob Chang Biol; 2017 Mar; 23(3):1095-1108. PubMed ID: 27612326 [TBL] [Abstract][Full Text] [Related]
9. Vegetation management with fire modifies peatland soil thermal regime. Brown LE; Palmer SM; Johnston K; Holden J J Environ Manage; 2015 May; 154():166-76. PubMed ID: 25728915 [TBL] [Abstract][Full Text] [Related]
10. Smouldering fire in a nutrient-limited wetland ecosystem: Long-lasting changes in water and soil chemistry facilitate shrub expansion into a drained burned fen. Sulwiński M; Mętrak M; Wilk M; Suska-Malawska M Sci Total Environ; 2020 Dec; 746():141142. PubMed ID: 32739756 [TBL] [Abstract][Full Text] [Related]
11. Ten years of vegetation assembly after a North American mega fire. Abella SR; Fornwalt PJ Glob Chang Biol; 2015 Feb; 21(2):789-802. PubMed ID: 25200376 [TBL] [Abstract][Full Text] [Related]
12. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Dawes MA; Philipson CD; Fonti P; Bebi P; Hättenschwiler S; Hagedorn F; Rixen C Glob Chang Biol; 2015 May; 21(5):2005-21. PubMed ID: 25471674 [TBL] [Abstract][Full Text] [Related]
13. Using a model based fourth-corner analysis to explain vegetation change following an extraordinary fire disturbance. Venn SE; Pickering CM; Butler SA; Letten AD Oecologia; 2016 Nov; 182(3):855-63. PubMed ID: 27573617 [TBL] [Abstract][Full Text] [Related]
14. Erratum to: Modeling rates of life form cover change in burned and unburned alpine heathland subject to experimental warming. Camac JS; Williams RJ; Wahren CH; Jarrad F; Hoffmann AA; Vesk PA Oecologia; 2015 Jun; 178(2):629-30. PubMed ID: 25894094 [No Abstract] [Full Text] [Related]
15. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra. Ylänne H; Stark S; Tolvanen A Glob Chang Biol; 2015 Oct; 21(10):3696-711. PubMed ID: 25950664 [TBL] [Abstract][Full Text] [Related]
16. Soil moisture mediates alpine life form and community productivity responses to warming. Winkler DE; Chapin KJ; Kueppers LM Ecology; 2016 Jun; 97(6):1553-1563. PubMed ID: 27859221 [TBL] [Abstract][Full Text] [Related]
17. Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence? Lindenmayer DB; Candy SG; MacGregor CI; Banks SC; Westgate M; Ikin K; Pierson J; Tulloch A; Barton P Ecol Appl; 2016 Oct; 26(7):2267-2279. PubMed ID: 27755726 [TBL] [Abstract][Full Text] [Related]
18. Effects of anthropogenic fire history on savanna vegetation in northeastern Namibia. Sheuyange A; Oba G; Weladji RB J Environ Manage; 2005 May; 75(3):189-98. PubMed ID: 15829362 [TBL] [Abstract][Full Text] [Related]
19. A richer, greener and smaller alpine world: review and projection of warming-induced plant cover change in the Swedish Scandes. Kullman L Ambio; 2010 Mar; 39(2):159-69. PubMed ID: 20653278 [TBL] [Abstract][Full Text] [Related]
20. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ward SE; Ostle NJ; Oakley S; Quirk H; Henrys PA; Bardgett RD Ecol Lett; 2013 Oct; 16(10):1285-93. PubMed ID: 23953244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]