BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25694425)

  • 21. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease.
    Lazareno-Saez C; Arutyunova E; Coquelle N; Lemieux MJ
    J Mol Biol; 2013 Apr; 425(7):1127-42. PubMed ID: 23353827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MutT-related error avoidance mechanism for DNA synthesis.
    Sekiguchi M
    Genes Cells; 1996 Feb; 1(2):139-45. PubMed ID: 9140059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1).
    Miazzi C; Ferraro P; Pontarin G; Rampazzo C; Reichard P; Bianchi V
    J Biol Chem; 2014 Jun; 289(26):18339-46. PubMed ID: 24828500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the metabolic function of the MutT 8-oxodeoxyguanosine triphosphatase in Escherichia coli by nucleotide pool analysis.
    Tassotto ML; Mathews CK
    J Biol Chem; 2002 May; 277(18):15807-12. PubMed ID: 11856756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A nucleotide-dependent oligomerization of the Escherichia coli replication initiator DnaA requires residue His136 for remodeling of the chromosomal origin.
    Saxena R; Stanley CB; Kumar P; Cuneo MJ; Patil D; Jha J; Weiss KL; Chattoraj DK; Crooke E
    Nucleic Acids Res; 2020 Jan; 48(1):200-211. PubMed ID: 31665475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism.
    Horne CR; Kind L; Davies JS; Dobson RCJ
    Proteins; 2020 May; 88(5):654-668. PubMed ID: 31697432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A guardian residue hinders insertion of a Fapy•dGTP analog by modulating the open-closed DNA polymerase transition.
    Smith MR; Shock DD; Beard WA; Greenberg MM; Freudenthal BD; Wilson SH
    Nucleic Acids Res; 2019 Apr; 47(6):3197-3207. PubMed ID: 30649431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates.
    Koharudin LM; Wu Y; DeLucia M; Mehrens J; Gronenborn AM; Ahn J
    J Biol Chem; 2014 Nov; 289(47):32617-27. PubMed ID: 25288794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Location and molecular cloning of the structural gene for the deoxyguanosine triphosphate triphosphohydrolase of Escherichia coli.
    Quirk S; Seto D; Bhatnagar SK; Gauss P; Gold L; Bessman MJ
    Mol Microbiol; 1989 Oct; 3(10):1391-5. PubMed ID: 2559296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel mechanism for preventing mutations caused by oxidation of guanine nucleotides.
    Ishibashi T; Hayakawa H; Sekiguchi M
    EMBO Rep; 2003 May; 4(5):479-83. PubMed ID: 12717453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two dNTP triphosphohydrolases from Pseudomonas aeruginosa possess diverse substrate specificities.
    Mega R; Kondo N; Nakagawa N; Kuramitsu S; Masui R
    FEBS J; 2009 Jun; 276(12):3211-21. PubMed ID: 19438719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for DNA recognition and nuclease processing by the Mre11 homologue SbcD in double-strand breaks repair.
    Liu S; Tian LF; Liu YP; An XM; Tang Q; Yan XX; Liang DC
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):299-309. PubMed ID: 24531464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase.
    Zhu C; Gao W; Zhao K; Qin X; Zhang Y; Peng X; Zhang L; Dong Y; Zhang W; Li P; Wei W; Gong Y; Yu XF
    Nat Commun; 2013; 4():2722. PubMed ID: 24217394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Escherichia coli MutY mutant without the six-helix barrel domain is a dimer in solution and assembles cooperatively into multisubunit complexes with DNA.
    Lee CY; Bai H; Houle R; Wilson GM; Lu AL
    J Biol Chem; 2004 Dec; 279(50):52653-63. PubMed ID: 15456766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for morpheein-type allosteric regulation of Escherichia coli glucosamine-6-phosphate synthase: equilibrium between inactive hexamer and active dimer.
    Mouilleron S; Badet-Denisot MA; Pecqueur L; Madiona K; Assrir N; Badet B; Golinelli-Pimpaneau B
    J Biol Chem; 2012 Oct; 287(41):34533-46. PubMed ID: 22851174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substitutions of Conserved Residues in the C-terminal Region of DnaC Cause Thermolability in Helicase Loading.
    Felczak MM; Sage JM; Hupert-Kocurek K; Aykul S; Kaguni JM
    J Biol Chem; 2016 Feb; 291(9):4803-12. PubMed ID: 26728455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA-RNA interactions are critical for chromosome condensation in
    Qian Z; Zhurkin VB; Adhya S
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12225-12230. PubMed ID: 29087325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides.
    Cai JP; Ishibashi T; Takagi Y; Hayakawa H; Sekiguchi M
    Biochem Biophys Res Commun; 2003 Jun; 305(4):1073-7. PubMed ID: 12767940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.