These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Enhancement of skin optical clearing efficacy using photo-irradiation. Liu C; Zhi Z; Tuchin VV; Luo Q; Zhu D Lasers Surg Med; 2010 Feb; 42(2):132-40. PubMed ID: 20166162 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of cranial window types for in vivo two-photon imaging of brain microstructures. Isshiki M; Okabe S Microscopy (Oxf); 2014 Feb; 63(1):53-63. PubMed ID: 24212360 [TBL] [Abstract][Full Text] [Related]
29. Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications. Golovynskyi S; Golovynska I; Stepanova LI; Datsenko OI; Liu L; Qu J; Ohulchanskyy TY J Biophotonics; 2018 Dec; 11(12):e201800141. PubMed ID: 30098115 [TBL] [Abstract][Full Text] [Related]
30. Moving tissue spectral window to the deep-ultraviolet via optical clearing. Carneiro I; Carvalho S; Henrique R; Oliveira L; Tuchin V J Biophotonics; 2019 Dec; 12(12):e201900181. PubMed ID: 31465137 [TBL] [Abstract][Full Text] [Related]
31. Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing. Yu T; Wen X; Tuchin VV; Luo Q; Zhu D J Biomed Opt; 2011 Sep; 16(9):095002. PubMed ID: 21950911 [TBL] [Abstract][Full Text] [Related]
32. A quantitative metric for the comparative evaluation of optical clearing protocols for 3D multicellular spheroids. Diosdi A; Hirling D; Kovacs M; Toth T; Harmati M; Koos K; Buzas K; Piccinini F; Horvath P Comput Struct Biotechnol J; 2021; 19():1233-1243. PubMed ID: 33717421 [TBL] [Abstract][Full Text] [Related]
33. Imaging dermal blood flow through the intact rat skin with an optical clearing method. Zhu D; Wang J; Zhi Z; Wen X; Luo Q J Biomed Opt; 2010; 15(2):026008. PubMed ID: 20459253 [TBL] [Abstract][Full Text] [Related]
34. Quantitative assessment of optical clearing methods in various intact mouse organs. Xu J; Ma Y; Yu T; Zhu D J Biophotonics; 2019 Feb; 12(2):e201800134. PubMed ID: 30318789 [TBL] [Abstract][Full Text] [Related]
35. A useful way to develop effective in vivo skin optical clearing agents. Shi R; Guo L; Zhang C; Feng W; Li P; Ding Z; Zhu D J Biophotonics; 2017 Jun; 10(6-7):887-895. PubMed ID: 28009130 [TBL] [Abstract][Full Text] [Related]
36. Controling the scattering of intralipid by using optical clearing agents. Wen X; Tuchin VV; Luo Q; Zhu D Phys Med Biol; 2009 Nov; 54(22):6917-30. PubMed ID: 19887711 [TBL] [Abstract][Full Text] [Related]
37. Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex. Nomura Y; Fujii F; Sato C; Nemoto M; Tamura M Brain Res Brain Res Protoc; 2000 Feb; 5(1):10-5. PubMed ID: 10719260 [TBL] [Abstract][Full Text] [Related]
38. Deep subsurface cavities in skin utilizing mechanical optical clearing and femtosecond laser ablation. Qiu J; Neev J; Wang T; Milner TE Lasers Surg Med; 2013 Aug; 45(6):383-90. PubMed ID: 23754315 [TBL] [Abstract][Full Text] [Related]
39. Optical clearing facilitates integrated 3D visualization of mouse ileal microstructure and vascular network with high definition. Fu YY; Tang SC Microvasc Res; 2010 Dec; 80(3):512-21. PubMed ID: 20600164 [TBL] [Abstract][Full Text] [Related]
40. Simulation of fan-beam-type optical computed-tomography imaging of strongly scattering and weakly absorbing media. Yamada Y; Hasegawa Y; Yamashita Y Appl Opt; 1993 Sep; 32(25):4808-14. PubMed ID: 20830149 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]