BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25695215)

  • 1. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo.
    Hsiao HW; Hsu TS; Liu WH; Hsieh WC; Chou TF; Wu YJ; Jiang ST; Lai MZ
    Nat Commun; 2015 Feb; 6():6353. PubMed ID: 25695215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bcl10 is required for the development and suppressive function of Foxp3
    Yang D; Zhao X; Lin X
    Cell Mol Immunol; 2021 Jan; 18(1):206-218. PubMed ID: 31595055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E3 Ubiquitin Ligase VHL Regulates Hypoxia-Inducible Factor-1α to Maintain Regulatory T Cell Stability and Suppressive Capacity.
    Lee JH; Elly C; Park Y; Liu YC
    Immunity; 2015 Jun; 42(6):1062-74. PubMed ID: 26084024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha.
    Ben-Shoshan J; Maysel-Auslender S; Mor A; Keren G; George J
    Eur J Immunol; 2008 Sep; 38(9):2412-8. PubMed ID: 18792019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIF-2α is indispensable for regulatory T cell function.
    Hsu TS; Lin YL; Wang YA; Mo ST; Chi PY; Lai AC; Pan HY; Chang YJ; Lai MZ
    Nat Commun; 2020 Oct; 11(1):5005. PubMed ID: 33024109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation.
    Yang BH; Hagemann S; Mamareli P; Lauer U; Hoffmann U; Beckstette M; Föhse L; Prinz I; Pezoldt J; Suerbaum S; Sparwasser T; Hamann A; Floess S; Huehn J; Lochner M
    Mucosal Immunol; 2016 Mar; 9(2):444-57. PubMed ID: 26307665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deltex1 promotes protein kinase Cθ degradation and sustains Casitas B-lineage lymphoma expression.
    Hsu TS; Hsiao HW; Wu PJ; Liu WH; Lai MZ
    J Immunol; 2014 Aug; 193(4):1672-80. PubMed ID: 25000980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa.
    Clambey ET; McNamee EN; Westrich JA; Glover LE; Campbell EL; Jedlicka P; de Zoeten EF; Cambier JC; Stenmark KR; Colgan SP; Eltzschig HK
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):E2784-93. PubMed ID: 22988108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions.
    Hsu TS; Lai MZ
    J Leukoc Biol; 2018 Nov; 104(5):911-918. PubMed ID: 29901858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FOXP3 (in)stability and cancer immunotherapy.
    Mortezaee K
    Cytokine; 2024 Jun; 178():156589. PubMed ID: 38547750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of CD4
    Khosravi M; Bidmeshkipour A; Moravej A; Hojjat-Assari S; Naserian S; Karimi MH
    Immunol Res; 2018 Feb; 66(1):207-218. PubMed ID: 29143918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deltex1 is a target of the transcription factor NFAT that promotes T cell anergy.
    Hsiao HW; Liu WH; Wang CJ; Lo YH; Wu YH; Jiang ST; Lai MZ
    Immunity; 2009 Jul; 31(1):72-83. PubMed ID: 19592273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4
    Polanczyk MJ; Walker E; Haley D; Guerrouahen BS; Akporiaye ET
    J Transl Med; 2019 Jul; 17(1):219. PubMed ID: 31288845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity.
    Wang L; Liu Y; Beier UH; Han R; Bhatti TR; Akimova T; Hancock WW
    Blood; 2013 May; 121(18):3631-9. PubMed ID: 23444399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3.
    Wang L; Liu Y; Han R; Beier UH; Bhatti TR; Akimova T; Greene MI; Hiebert SW; Hancock WW
    J Clin Invest; 2015 Mar; 125(3):1111-23. PubMed ID: 25642770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foxp3 processing by proprotein convertases and control of regulatory T cell function.
    de Zoeten EF; Lee I; Wang L; Chen C; Ge G; Wells AD; Hancock WW; Ozkaynak E
    J Biol Chem; 2009 Feb; 284(9):5709-16. PubMed ID: 19117830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RORγt Promotes Foxp3 Expression by Antagonizing the Effector Program in Colonic Regulatory T Cells.
    Bhaumik S; Mickael ME; Moran M; Spell M; Basu R
    J Immunol; 2021 Oct; 207(8):2027-2038. PubMed ID: 34518282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.
    Wang DW; Zhou RB; Yao YM; Zhu XM; Yin YM; Zhao GJ; Dong N; Sheng ZY
    J Pharmacol Exp Ther; 2010 Dec; 335(3):553-61. PubMed ID: 20843956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mbd2 promotes foxp3 demethylation and T-regulatory-cell function.
    Wang L; Liu Y; Han R; Beier UH; Thomas RM; Wells AD; Hancock WW
    Mol Cell Biol; 2013 Oct; 33(20):4106-15. PubMed ID: 23979593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity.
    Ferreira RC; Simons HZ; Thompson WS; Rainbow DB; Yang X; Cutler AJ; Oliveira J; Castro Dopico X; Smyth DJ; Savinykh N; Mashar M; Vyse TJ; Dunger DB; Baxendale H; Chandra A; Wallace C; Todd JA; Wicker LS; Pekalski ML
    J Autoimmun; 2017 Nov; 84():75-86. PubMed ID: 28747257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.