BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25695268)

  • 1. The outer subventricular zone and primate-specific cortical complexification.
    Dehay C; Kennedy H; Kosik KS
    Neuron; 2015 Feb; 85(4):683-94. PubMed ID: 25695268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organization and interareal networks in the primate cortex.
    Kennedy H; Dehay C
    Prog Brain Res; 2012; 195():341-60. PubMed ID: 22230635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate.
    Betizeau M; Cortay V; Patti D; Pfister S; Gautier E; Bellemin-Ménard A; Afanassieff M; Huissoud C; Douglas RJ; Kennedy H; Dehay C
    Neuron; 2013 Oct; 80(2):442-57. PubMed ID: 24139044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.
    Reillo I; Borrell V
    Cereb Cortex; 2012 Sep; 22(9):2039-54. PubMed ID: 21988826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns.
    Arcila ML; Betizeau M; Cambronne XA; Guzman E; Doerflinger N; Bouhallier F; Zhou H; Wu B; Rani N; Bassett DS; Borello U; Huissoud C; Goodman RH; Dehay C; Kosik KS
    Neuron; 2014 Mar; 81(6):1255-1262. PubMed ID: 24583023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of primate neurogenesis and the deployment of top-down generative networks in the cortical hierarchy.
    Kennedy H; Wianny F; Dehay C
    Curr Opin Neurobiol; 2021 Feb; 66():69-76. PubMed ID: 33099180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Primate-Specific Gene TMEM14B Marks Outer Radial Glia Cells and Promotes Cortical Expansion and Folding.
    Liu J; Liu W; Yang L; Wu Q; Zhang H; Fang A; Li L; Xu X; Sun L; Zhang J; Tang F; Wang X
    Cell Stem Cell; 2017 Nov; 21(5):635-649.e8. PubMed ID: 29033352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis.
    Hevner RF; Haydar TF
    Cereb Cortex; 2012 Feb; 22(2):465-8. PubMed ID: 22116731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum.
    Rash BG; Duque A; Morozov YM; Arellano JI; Micali N; Rakic P
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):7089-7094. PubMed ID: 30894491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Molecular and cellular mechanisms of cortical expansion and folding in brain development and evolution].
    Ju XC; Hou QQ; Xiao Q; Luo ZG
    Sheng Li Xue Bao; 2017 Aug; 69(4):485-497. PubMed ID: 28825108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation.
    Tomasello U; Klingler E; Niquille M; Mule N; Santinha AJ; de Vevey L; Prados J; Platt RJ; Borrell V; Jabaudon D; Dayer A
    Cell Rep; 2022 Feb; 38(7):110381. PubMed ID: 35172154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent.
    García-Moreno F; Vasistha NA; Trevia N; Bourne JA; Molnár Z
    Cereb Cortex; 2012 Feb; 22(2):482-92. PubMed ID: 22114081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organization and pattern formation in primate cortical networks.
    Kennedy H; Douglas R; Knoblauch K; Dehay C
    Novartis Found Symp; 2007; 288():178-94 discussion 195-8, 276-81. PubMed ID: 18494259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Subventricular Zone: A Key Player in Human Neocortical Development.
    Ortega JA; Memi F; Radonjic N; Filipovic R; Bagasrawala I; Zecevic N; Jakovcevski I
    Neuroscientist; 2018 Apr; 24(2):156-170. PubMed ID: 29254416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and Morphological Features of Microglia in the Developing Cerebral Cortex of Gyrencephalic Mammals.
    Mizuguchi K; Horiike T; Matsumoto N; Ichikawa Y; Shinmyo Y; Kawasaki H
    Neurochem Res; 2018 May; 43(5):1075-1085. PubMed ID: 29616442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evolution of the primate neocortex from a progenitor cell perspective.
    Dehay C; Huttner WB
    Development; 2024 Feb; 151(4):. PubMed ID: 38369736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages.
    Reznikov K; Acklin SE; van der Kooy D
    Dev Dyn; 1997 Nov; 210(3):328-43. PubMed ID: 9389457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative aspects of cortical neurogenesis in vertebrates.
    Cheung AF; Pollen AA; Tavare A; DeProto J; Molnár Z
    J Anat; 2007 Aug; 211(2):164-76. PubMed ID: 17634059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of human cerebral organoids with a structured outer subventricular zone.
    Walsh RM; Luongo R; Giacomelli E; Ciceri G; Rittenhouse C; Verrillo A; Galimberti M; Bocchi VD; Wu Y; Xu N; Mosole S; Muller J; Vezzoli E; Jungverdorben J; Zhou T; Barker RA; Cattaneo E; Studer L; Baggiolini A
    Cell Rep; 2024 Apr; 43(4):114031. PubMed ID: 38583153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain.
    Pencea V; Bingaman KD; Freedman LJ; Luskin MB
    Exp Neurol; 2001 Nov; 172(1):1-16. PubMed ID: 11681836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.