These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25695312)
1. Concerted proton-electron transfer in electrocatalytic O2 reduction by iron porphyrin complexes: axial ligands tuning H/D isotope effect. Chatterjee S; Sengupta K; Samanta S; Das PK; Dey A Inorg Chem; 2015 Mar; 54(5):2383-92. PubMed ID: 25695312 [TBL] [Abstract][Full Text] [Related]
2. Factors Determining the Rate and Selectivity of 4e Chatterjee S; Sengupta K; Mondal B; Dey S; Dey A Acc Chem Res; 2017 Jul; 50(7):1744-1753. PubMed ID: 28686419 [TBL] [Abstract][Full Text] [Related]
3. Electrocatalytic O2 reduction reaction by synthetic analogues of cytochrome P450 and myoglobin: in-situ resonance Raman and dynamic electrochemistry investigations. Chatterjee S; Sengupta K; Samanta S; Das PK; Dey A Inorg Chem; 2013 Sep; 52(17):9897-907. PubMed ID: 23961832 [TBL] [Abstract][Full Text] [Related]
4. Resonance Raman and electrocatalytic behavior of thiolate and imidazole bound iron porphyrin complexes on self assembled monolayers: functional modeling of cytochrome P450. Sengupta K; Chatterjee S; Samanta S; Bandyopadhyay S; Dey A Inorg Chem; 2013 Feb; 52(4):2000-14. PubMed ID: 23356644 [TBL] [Abstract][Full Text] [Related]
5. EPR, resonance Raman, and DFT calculations on thiolate- and imidazole-bound iron(III) porphyrin complexes: role of the axial ligand in tuning the electronic structure. Das PK; Chatterjee S; Samanta S; Dey A Inorg Chem; 2012 Oct; 51(20):10704-14. PubMed ID: 23013308 [TBL] [Abstract][Full Text] [Related]
6. Tuning the thermodynamic onset potential of electrocatalytic O2 reduction reaction by synthetic iron-porphyrin complexes. Amanullah S; Das PK; Samanta S; Dey A Chem Commun (Camb); 2015 Jun; 51(49):10010-3. PubMed ID: 26000662 [TBL] [Abstract][Full Text] [Related]
7. Axial ligand and spin-state influence on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes. Franke A; Fertinger C; van Eldik R Chemistry; 2012 May; 18(22):6935-49. PubMed ID: 22532376 [TBL] [Abstract][Full Text] [Related]
8. Selective 4e-/4H+ O2 reduction by an iron(tetraferrocenyl)porphyrin complex: from proton transfer followed by electron transfer in organic solvent to proton coupled electron transfer in aqueous medium. Mittra K; Chatterjee S; Samanta S; Dey A Inorg Chem; 2013 Dec; 52(24):14317-25. PubMed ID: 24304224 [TBL] [Abstract][Full Text] [Related]
9. O2 reduction reaction by biologically relevant anionic ligand bound iron porphyrin complexes. Samanta S; Das PK; Chatterjee S; Sengupta K; Mondal B; Dey A Inorg Chem; 2013 Nov; 52(22):12963-71. PubMed ID: 24171513 [TBL] [Abstract][Full Text] [Related]
10. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study. Ohta T; Nagaraju P; Liu JG; Ogura T; Naruta Y J Biol Inorg Chem; 2016 Sep; 21(5-6):745-55. PubMed ID: 27501847 [TBL] [Abstract][Full Text] [Related]
11. Electrocatalytic O2-Reduction by Synthetic Cytochrome c Oxidase Mimics: Identification of a "Bridging Peroxo" Intermediate Involved in Facile 4e(-)/4H(+) O2-Reduction. Chatterjee S; Sengupta K; Hematian S; Karlin KD; Dey A J Am Chem Soc; 2015 Oct; 137(40):12897-905. PubMed ID: 26419806 [TBL] [Abstract][Full Text] [Related]
12. Enhanced reactivities of iron(IV)-oxo porphyrin pi-cation radicals in oxygenation reactions by electron-donating axial ligands. Kang Y; Chen H; Jeong YJ; Lai W; Bae EH; Shaik S; Nam W Chemistry; 2009 Oct; 15(39):10039-46. PubMed ID: 19697378 [TBL] [Abstract][Full Text] [Related]
13. Axial ligand orientations in a distorted porphyrin macrocycle: synthesis, structure, and properties of low-spin bis(imidazole)iron(III) and iron(II) porphyrinates. Patra R; Chaudhary A; Ghosh SK; Rath SP Inorg Chem; 2010 Mar; 49(5):2057-67. PubMed ID: 20128598 [TBL] [Abstract][Full Text] [Related]
14. Effect of the axial ligand on the reactivity of the oxoiron(IV) porphyrin π-cation radical complex: higher stabilization of the product state relative to the reactant state. Takahashi A; Yamaki D; Ikemura K; Kurahashi T; Ogura T; Hada M; Fujii H Inorg Chem; 2012 Jul; 51(13):7296-305. PubMed ID: 22716193 [TBL] [Abstract][Full Text] [Related]
15. Second sphere control of redox catalysis: selective reduction of O2 to O2- or H2O by an iron porphyrin catalyst. Samanta S; Mittra K; Sengupta K; Chatterjee S; Dey A Inorg Chem; 2013 Feb; 52(3):1443-53. PubMed ID: 23305073 [TBL] [Abstract][Full Text] [Related]
16. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity. Dey A; Jenney FE; Adams MW; Johnson MK; Hodgson KO; Hedman B; Solomon EI J Am Chem Soc; 2007 Oct; 129(41):12418-31. PubMed ID: 17887751 [TBL] [Abstract][Full Text] [Related]
17. Water-soluble polymer-bound biomimetic analogues of cytochrome C oxidase catalyze 4e- reduction of O2 to water. Collman JP; Fudickar W; Shiryaeva I Inorg Chem; 2003 Jun; 42(11):3384-6. PubMed ID: 12767168 [TBL] [Abstract][Full Text] [Related]
18. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Li X; Lei H; Xie L; Wang N; Zhang W; Cao R Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic characterization of a phenolate bound Fe(II)-O2 adduct: gauging the relative "push" effect of a phenolate axial ligand. Das PK; Mittra K; Dey A Chem Commun (Camb); 2014 May; 50(40):5218-20. PubMed ID: 24248332 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalytic reduction of ROOH by iron porphyrins. Collman JP; Kaplun M; Sunderland CJ; Boulatov R J Am Chem Soc; 2004 Sep; 126(36):11166-7. PubMed ID: 15355094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]