These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25695674)

  • 1. Needleless connectors substantially reduce flow of crystalloid and red blood cells during rapid infusion.
    Lehn RA; Gross JB; McIsaac JH; Gipson KE
    Anesth Analg; 2015 Apr; 120(4):801-4. PubMed ID: 25695674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow rates through intravenous access devices: an in vitro study.
    Khoyratty SI; Gajendragadkar PR; Polisetty K; Ward S; Skinner T; Gajendragadkar PR
    J Clin Anesth; 2016 Jun; 31():101-5. PubMed ID: 27185686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative evaluation of five needleless intravenous connectors.
    Chernecky C; Waller J
    J Adv Nurs; 2011 Jul; 67(7):1601-13. PubMed ID: 21366670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of flow rates and warming capabilities of the Level 1 and Rapid Infusion System with various-size intravenous catheters.
    Barcelona SL; Vilich F; Coté CJ
    Anesth Analg; 2003 Aug; 97(2):358-363. PubMed ID: 12873917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-rate measurements and models for colloid and crystalloid flows in central and peripheral venous line infusion systems.
    Chen IY; Huang YC; Lin WH
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1632-8. PubMed ID: 12549746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Needleless connectors for IV catheters.
    Hadaway L
    Am J Nurs; 2012 Nov; 112(11):32-44; quiz 45. PubMed ID: 23075549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of needleless connectors and inserted catheters on flow rates through vascular introducer sheaths.
    Smeltz AM; Patel DS; Williams JH
    Anaesth Intensive Care; 2024 May; 52(3):180-183. PubMed ID: 38649298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance assessment of intravenous catheters for massive transfusion: A pragmatic in vitro study.
    Milne A; Teng JJ; Vargas A; Markley JC; Collins A
    Transfusion; 2021 Jun; 61(6):1721-1728. PubMed ID: 33846984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Blood Transfusion: The Importance of Hemodilution and Needleless Connectors.
    Burbridge MA; Panigrahi AK; Stone SA; Jaffe RA; Brock-Utne J
    Cureus; 2021 Mar; 13(3):e13999. PubMed ID: 33880314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical limitations in the rapid infusion of intravenous fluids.
    Aeder MI; Crowe JP; Rhodes RS; Shuck JM; Wolf WM
    Ann Emerg Med; 1985 Apr; 14(4):307-10. PubMed ID: 3985441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.
    Hu MH; Chan WH; Chen YC; Cherng CH; Lin CK; Tsai CS; Chou YC; Huang GS
    Shock; 2016 Jan; 45(1):98-103. PubMed ID: 26674456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow rates of large animal fluid delivery systems used for high-volume crystalloid resuscitation.
    Nolen-Walston RD
    J Vet Emerg Crit Care (San Antonio); 2012 Dec; 22(6):661-5. PubMed ID: 23216840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the InterLink cannula on fluid flow rates and haemolysis.
    Saw S; Arendts G
    Emerg Med (Fremantle); 2001 Dec; 13(4):456-9. PubMed ID: 11903431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulated clinical evaluation of conventional and newer fluid-warming devices.
    Patel N; Knapke DM; Smith CE; Napora TE; Pinchak AC; Hagen JF
    Anesth Analg; 1996 Mar; 82(3):517-24. PubMed ID: 8623954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An In Vitro Assessment of the Efficacy of Various IV Cannulas for the Rapid IV Fluid Administration.
    Kamata M; Walia H; Hakim M; Tumin D; Tobias JD
    Pediatr Crit Care Med; 2017 May; 18(5):e224-e228. PubMed ID: 28319488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravenous fluid resuscitation: was Poiseuille right?
    Reddick AD; Ronald J; Morrison WG
    Emerg Med J; 2011 Mar; 28(3):201-2. PubMed ID: 20581377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of steel and teflon infusion catheters on subcutaneous adipose tissue blood flow and infusion counter pressure in humans.
    Højbjerre L; Skov-Jensen C; Kaastrup P; Pedersen PE; Stallknecht B
    Diabetes Technol Ther; 2009 May; 11(5):301-6. PubMed ID: 19425878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of multi-lumen extensions on fluid flow through intravenous cannulae.
    Levine DM; Garden AL; Truong HT; Bergemann J; Eames P
    Anaesthesia; 2013 Dec; 68(12):1239-42. PubMed ID: 24111631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of red blood cell and platelet counts on the distribution and elimination of crystalloid fluid.
    Hahn RG
    Medicina (Kaunas); 2017; 53(4):233-241. PubMed ID: 28943226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of IV cannula length on the rate of infusion.
    Jayanthi NV; Dabke HV
    Injury; 2006 Jan; 37(1):41-5. PubMed ID: 16356500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.