These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25695734)

  • 1. Correction to "Ab initio reaction kinetics of hydrogen abstraction from methyl formate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals".
    Tan T; Pavone M; Krisiloff DB; Carter EA
    J Phys Chem A; 2015 Mar; 119(10):2186. PubMed ID: 25695734
    [No Abstract]   [Full Text] [Related]  

  • 2. Ab initio reaction kinetics of hydrogen abstraction from methyl formate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals.
    Tan T; Pavone M; Krisiloff DB; Carter EA
    J Phys Chem A; 2012 Aug; 116(33):8431-43. PubMed ID: 22830521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Kinetics of Hydrogen Abstraction from Methyl Acetate by Hydrogen, Methyl, Oxygen, Hydroxyl, and Hydroperoxy Radicals.
    Tan T; Yang X; Krauter CM; Ju Y; Carter EA
    J Phys Chem A; 2015 Jun; 119(24):6377-90. PubMed ID: 25974050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio study on the structures of fluorinated formates and hydrogen abstraction reaction with OH radical.
    Chandra AK; Uchimaru T; Sugie M; Sekiya A
    J Comput Chem; 2003 Feb; 24(3):396-407. PubMed ID: 12548731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio reaction path analysis for the initial hydrogen abstraction from organic acids by hydroxyl radicals.
    Sun W; Yang L; Yu L; Saeys M
    J Phys Chem A; 2009 Jul; 113(27):7852-60. PubMed ID: 19569719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen abstraction from n-butanol by the hydroxyl radical: high level ab initio study of the relative significance of various abstraction channels and the role of weakly bound intermediates.
    Moc J; Simmie JM
    J Phys Chem A; 2010 May; 114(17):5558-64. PubMed ID: 20380410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary steps in the reaction of OH radicals with peptide systems: perspective from a study of model amides.
    Doan HQ; Davis AC; Francisco JS
    J Phys Chem A; 2010 Apr; 114(16):5342-57. PubMed ID: 20369811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen abstraction from n-butanol by the methyl radical: high level ab initio study of abstraction pathways and the importance of low energy rotational conformers.
    Katsikadakos D; Hardalupas Y; Taylor AM; Hunt PA
    Phys Chem Chem Phys; 2012 Jul; 14(27):9615-29. PubMed ID: 22692370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of hydroxyl radical with bergenin, a natural poly phenol studied by pulse radiolysis.
    Singh U; Barik A; Priyadarsini KI
    Bioorg Med Chem; 2009 Aug; 17(16):6008-14. PubMed ID: 19608422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium cation as radical-polymerization catalyst.
    Clark T
    J Am Chem Soc; 2006 Aug; 128(34):11278-85. PubMed ID: 16925447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and kinetic study of the hydrogen atom abstraction reactions of esters with H(O.)2 radicals.
    Mendes J; Zhou CW; Curran HJ
    J Phys Chem A; 2013 Dec; 117(51):14006-18. PubMed ID: 24175616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.
    Cao J; Zhang Z; Zhang C; Bian W; Guo Y
    J Chem Phys; 2011 Jan; 134(2):024315. PubMed ID: 21241107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by carbon-centered radicals.
    Paraskevas PD; Sabbe MK; Reyniers MF; Papayannakos N; Marin GB
    Chemphyschem; 2014 Jun; 15(9):1849-66. PubMed ID: 24829125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio and variational transition state approach to beta-C3N4 formation: kinetics for the reaction of CH3NH2 with H.
    Zhang Q; Zhang RQ; Chan KS; Bello I
    J Phys Chem A; 2005 Oct; 109(40):9112-7. PubMed ID: 16332019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the rate constants for the hydrogen atom abstraction reactions of esters with (•)OH radicals.
    Mendes J; Zhou CW; Curran HJ
    J Phys Chem A; 2014 Jul; 118(27):4889-99. PubMed ID: 24878337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the hydrogen transfer from the OH group to oxygen-centered radicals: proton-coupled electron-transfer versus radical hydrogen abstraction.
    Olivella S; Anglada JM; Solé A; Bofill JM
    Chemistry; 2004 Jul; 10(14):3404-10. PubMed ID: 15252786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio chemical kinetics of methyl formate decomposition: the simplest model biodiesel.
    Metcalfe WK; Simmie JM; Curran HJ
    J Phys Chem A; 2010 May; 114(17):5478-84. PubMed ID: 20380414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems.
    Temelso B; Sherrill CD; Merkle RC; Freitas RA
    J Phys Chem A; 2006 Sep; 110(38):11160-73. PubMed ID: 16986851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrogen abstraction reaction H + CH4. I. New analytical potential energy surface based on fitting to ab initio calculations.
    Corchado JC; Bravo JL; Espinosa-Garcia J
    J Chem Phys; 2009 May; 130(18):184314. PubMed ID: 19449928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction pathways and excited states in H(2)O(2)+OH-->HO(2)+H(2)O: a new ab initio investigation.
    Ginovska B; Camaioni DM; Dupuis M
    J Chem Phys; 2007 Aug; 127(8):084309. PubMed ID: 17764250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.