These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 2569674)

  • 1. Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons.
    Palaiologos G; Hertz L; Schousboe A
    Neurochem Res; 1989 Apr; 14(4):359-66. PubMed ID: 2569674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate.
    Palaiologos G; Hertz L; Schousboe A
    J Neurochem; 1988 Jul; 51(1):317-20. PubMed ID: 2898006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells.
    Peng LA; Schousboe A; Hertz L
    Neurochem Res; 1991 Jan; 16(1):29-34. PubMed ID: 1675774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectors of D-[3H]aspartate release from rat cerebellum.
    Svarna R; Georgopoulos A; Palaiologos G
    Neurochem Res; 1996 May; 21(5):603-8. PubMed ID: 8726969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of endogenous and newly synthesized glutamate and of other amino acids induced by non-N-methyl-D-aspartate receptor activation in cerebellar granule cell cultures.
    Levi G; Patrizio M; Gallo V
    J Neurochem; 1991 Jan; 56(1):199-206. PubMed ID: 1670952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons.
    Waagepetersen HS; Qu H; Sonnewald U; Shimamoto K; Schousboe A
    Neurochem Int; 2005 Jul; 47(1-2):92-102. PubMed ID: 15921825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulphur-containing excitatory amino acid-evoked Ca(2+)-independent release of D-[3H]aspartate from cultured cerebellar granule cells: the role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier.
    Dunlop J; Grieve A; Damgaard I; Schousboe A; Griffiths R
    Neuroscience; 1992 Sep; 50(1):107-15. PubMed ID: 1357589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putative acidic amino acid transmitters in the cerebellum. I. Depolarization-induced release.
    Levi G; Gordon RD; Gallo V; Wilkin GP; Balàzs R
    Brain Res; 1982 May; 239(2):425-45. PubMed ID: 6124302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3H-D-aspartate release from cerebellar granule neurons is differentially regulated by glutamate- and K(+)-stimulation.
    Belhage B; Rehder V; Hansen GH; Kater SB; Schousboe A
    J Neurosci Res; 1992 Nov; 33(3):436-44. PubMed ID: 1361584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro.
    Drejer J; Benveniste H; Diemer NH; Schousboe A
    J Neurochem; 1985 Jul; 45(1):145-51. PubMed ID: 2860206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of amino acid formation during palmitate oxidation in rat brain mitochondria.
    Kawamura N
    Neurochem Res; 1989 Jan; 14(1):9-15. PubMed ID: 2565541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells.
    Schousboe A; Frandsen A; Drejer J
    Neurochem Res; 1989 Sep; 14(9):871-5. PubMed ID: 2574422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phenylsuccinate on potassium- and ischemia-induced release of glutamate in rat hippocampus monitored by microdialysis.
    Christensen T; Bruhn T; Diemer NH; Schousboe A
    Neurosci Lett; 1991 Dec; 134(1):71-4. PubMed ID: 1687703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools.
    Levi G; Gallo V
    J Neurochem; 1981 Jul; 37(1):22-31. PubMed ID: 6114134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperammonemic alterations in the metabolism of glutamate and aspartate in rat cerebellar astrocytes.
    Rao VL; Murthy CR
    Neurosci Lett; 1992 Apr; 138(1):107-10. PubMed ID: 1357596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depression by sodium ions of calcium uptake mediated by non-N-methyl-D-aspartate receptors in cultured cerebellar neurons and correlation with evoked D-[3H]aspartate release.
    Gallo V; Giovannini C; Levi G
    J Neurochem; 1992 Feb; 58(2):406-15. PubMed ID: 1345937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate receptor subtypes in cultured cerebellar neurons: modulation of glutamate and gamma-aminobutyric acid release.
    Gallo V; Suergiu R; Giovannini C; Levi G
    J Neurochem; 1987 Dec; 49(6):1801-9. PubMed ID: 2890714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of endogenous and accumulated exogenous amino acids from slices of normal and climbing fibre-deprived rat cerebellar slices.
    Toggenburger G; Wiklund L; Henke H; Cuénod M
    J Neurochem; 1983 Dec; 41(6):1606-13. PubMed ID: 6139414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro.
    Bosley TM; Woodhams PL; Gordon RD; Balázs R
    J Neurochem; 1983 Jan; 40(1):189-201. PubMed ID: 6129287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine and aspartate loading of synaptosomes: a reevaluation of effects on calcium-dependent excitatory amino acid release.
    McMahon HT; Nicholls DG
    J Neurochem; 1990 Feb; 54(2):373-80. PubMed ID: 1967628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.