These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Simple and complex retinal dystrophies are associated with profoundly different disease networks. Kiel C; Lastrucci C; Luthert PJ; Serrano L Sci Rep; 2017 Jan; 7():41835. PubMed ID: 28139756 [TBL] [Abstract][Full Text] [Related]
23. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Chiu W; Lin TY; Chang YC; Isahwan-Ahmad Mulyadi Lai H; Lin SC; Ma C; Yarmishyn AA; Lin SC; Chang KJ; Chou YB; Hsu CC; Lin TC; Chen SJ; Chien Y; Yang YP; Hwang DK Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926102 [TBL] [Abstract][Full Text] [Related]
24. Identification of Novel and Recurrent Disease-Causing Mutations in Retinal Dystrophies Using Whole Exome Sequencing (WES): Benefits and Limitations. Tiwari A; Lemke J; Altmueller J; Thiele H; Glaus E; Fleischhauer J; Nürnberg P; Neidhardt J; Berger W PLoS One; 2016; 11(7):e0158692. PubMed ID: 27391102 [TBL] [Abstract][Full Text] [Related]
25. A dominant mutation in MAPKAPK3, an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium. Meunier I; Lenaers G; Bocquet B; Baudoin C; Piro-Megy C; Cubizolle A; Quilès M; Jean-Charles A; Cohen SY; Merle H; Gaudric A; Labesse G; Manes G; Péquignot M; Cazevieille C; Dhaenens CM; Fichard A; Ronkina N; Arthur SJ; Gaestel M; Hamel CP Hum Mol Genet; 2016 Mar; 25(5):916-26. PubMed ID: 26744326 [TBL] [Abstract][Full Text] [Related]
26. Gene therapy for inherited retinal diseases: progress and possibilities. Hu ML; Edwards TL; O'Hare F; Hickey DG; Wang JH; Liu Z; Ayton LN Clin Exp Optom; 2021 May; 104(4):444-454. PubMed ID: 33689657 [TBL] [Abstract][Full Text] [Related]
27. PCYT1A deficiency disturbs fatty acid metabolism and induces ferroptosis in the mouse retina. Wang K; Xu H; Zou R; Zeng G; Yuan Y; Zhu X; Zhao X; Li J; Zhang L BMC Biol; 2024 Jun; 22(1):134. PubMed ID: 38858683 [TBL] [Abstract][Full Text] [Related]
28. Development of Refractive Errors-What Can We Learn From Inherited Retinal Dystrophies? Hendriks M; Verhoeven VJM; Buitendijk GHS; Polling JR; Meester-Smoor MA; Hofman A; ; Kamermans M; Ingeborgh van den Born L; Klaver CCW Am J Ophthalmol; 2017 Oct; 182():81-89. PubMed ID: 28751151 [TBL] [Abstract][Full Text] [Related]
30. Chromatin immunoprecipitation identifies photoreceptor transcription factor targets in mouse models of retinal degeneration: new findings and challenges. Peng GH; Chen S Vis Neurosci; 2005; 22(5):575-86. PubMed ID: 16332268 [TBL] [Abstract][Full Text] [Related]
31. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter. Bacchi N; Casarosa S; Denti MA Invest Ophthalmol Vis Sci; 2014 May; 55(5):3285-94. PubMed ID: 24867912 [TBL] [Abstract][Full Text] [Related]
32. OTX2 mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. Vincent A; Forster N; Maynes JT; Paton TA; Billingsley G; Roslin NM; Ali A; Sutherland J; Wright T; Westall CA; Paterson AD; Marshall CR; ; Héon E J Med Genet; 2014 Dec; 51(12):797-805. PubMed ID: 25293953 [TBL] [Abstract][Full Text] [Related]
33. Scaling New Heights in the Genetic Diagnosis of Inherited Retinal Dystrophies. Gonzàlez-Duarte R; de Castro-Miró M; Tuson M; Ramírez-Castañeda V; Gils RV; Marfany G Adv Exp Med Biol; 2019; 1185():215-219. PubMed ID: 31884614 [TBL] [Abstract][Full Text] [Related]
35. Next-generation sequencing targeted disease panel in rod-cone retinal dystrophies in Māori and Polynesian reveals novel changes and a common founder mutation. Vincent AL; Abeysekera N; van Bysterveldt KA; Oliver VF; Ellingford JM; Barton S; Black GC Clin Exp Ophthalmol; 2017 Dec; 45(9):901-910. PubMed ID: 28488341 [TBL] [Abstract][Full Text] [Related]
36. A diagnostic approach to syndromic retinal dystrophies with intellectual disability. Yang XR; Benson MD; MacDonald IM; Innes AM Am J Med Genet C Semin Med Genet; 2020 Sep; 184(3):538-570. PubMed ID: 32918368 [TBL] [Abstract][Full Text] [Related]
37. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Slijkerman RW; Song F; Astuti GD; Huynen MA; van Wijk E; Stieger K; Collin RW Prog Retin Eye Res; 2015 Sep; 48():137-59. PubMed ID: 25936606 [TBL] [Abstract][Full Text] [Related]
38. Retinal dystrophies and gene therapy. Sundaram V; Moore AT; Ali RR; Bainbridge JW Eur J Pediatr; 2012 May; 171(5):757-65. PubMed ID: 22080959 [TBL] [Abstract][Full Text] [Related]
39. Molecular diagnosis based on comprehensive genetic testing in 800 Chinese families with non-syndromic inherited retinal dystrophies. Liu X; Tao T; Zhao L; Li G; Yang L Clin Exp Ophthalmol; 2021 Jan; 49(1):46-59. PubMed ID: 33090715 [TBL] [Abstract][Full Text] [Related]
40. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa. Corton M; Avila-Fernández A; Campello L; Sánchez M; Benavides B; López-Molina MI; Fernández-Sánchez L; Sánchez-Alcudia R; da Silva LRJ; Reyes N; Martín-Garrido E; Zurita O; Fernández-San José P; Pérez-Carro R; García-García F; Dopazo J; García-Sandoval B; Cuenca N; Ayuso C Sci Rep; 2016 Oct; 6():35370. PubMed ID: 27734943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]