BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25697517)

  • 1. Functional stability of rhodopsin in a bicelle system: evaluating G protein activation by rhodopsin in bicelles.
    Kaya AI; Iverson TM; Hamm HE
    Methods Mol Biol; 2015; 1271():67-76. PubMed ID: 25697517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-dependent G-protein activation in lipidic cubic phase.
    Navarro J; Landau EM; Fahmy K
    Biopolymers; 2002; 67(3):167-77. PubMed ID: 11979595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function.
    Jastrzebska B; Debinski A; Filipek S; Palczewski K
    Prog Lipid Res; 2011 Jul; 50(3):267-77. PubMed ID: 21435354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex.
    Niu SL; Mitchell DC; Litman BJ
    J Biol Chem; 2001 Nov; 276(46):42807-11. PubMed ID: 11544259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding.
    Mitchell DC; Niu SL; Litman BJ
    J Biol Chem; 2001 Nov; 276(46):42801-6. PubMed ID: 11544258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance.
    Heyse S; Ernst OP; Dienes Z; Hofmann KP; Vogel H
    Biochemistry; 1998 Jan; 37(2):507-22. PubMed ID: 9425071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure.
    Huber T; Botelho AV; Beyer K; Brown MF
    Biophys J; 2004 Apr; 86(4):2078-100. PubMed ID: 15041649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer.
    Whorton MR; Jastrzebska B; Park PS; Fotiadis D; Engel A; Palczewski K; Sunahara RK
    J Biol Chem; 2008 Feb; 283(7):4387-94. PubMed ID: 18033822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opsin stability and folding: modulation by phospholipid bicelles.
    McKibbin C; Farmer NA; Jeans C; Reeves PJ; Khorana HG; Wallace BA; Edwards PC; Villa C; Booth PJ
    J Mol Biol; 2007 Dec; 374(5):1319-32. PubMed ID: 17996895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex.
    Jastrzebska B; Goc A; Golczak M; Palczewski K
    Biochemistry; 2009 Jun; 48(23):5159-70. PubMed ID: 19413332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of the Rhodopsin-Transducin Complex into Lipid Nanodiscs.
    Gao Y; Erickson JW; Cerione RA; Ramachandran S
    Methods Mol Biol; 2019; 2009():317-324. PubMed ID: 31152414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling efficiency of rhodopsin and transducin in bicelles.
    Kaya AI; Thaker TM; Preininger AM; Iverson TM; Hamm HE
    Biochemistry; 2011 Apr; 50(15):3193-203. PubMed ID: 21375271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid Bicelles Improve the Conformational Stability of Rhodopsin Mutants Associated with Retinitis Pigmentosa.
    Dong X; Ramon E; Herrera-Hernández MG; Garriga P
    Biochemistry; 2015 Aug; 54(31):4795-804. PubMed ID: 26181234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin.
    Tian H; Sakmar TP; Huber T
    Biophys J; 2017 Jul; 113(1):60-72. PubMed ID: 28700926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rhodopsin-arrestin-1 interaction in bicelles.
    Chen Q; Vishnivetskiy SA; Zhuang T; Cho MK; Thaker TM; Sanders CR; Gurevich VV; Iverson TM
    Methods Mol Biol; 2015; 1271():77-95. PubMed ID: 25697518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study.
    Isele J; Sakmar TP; Siebert F
    Biophys J; 2000 Dec; 79(6):3063-71. PubMed ID: 11106612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interactions between the photoreceptor G protein and rhodopsin.
    Hamm HE
    Cell Mol Neurobiol; 1991 Dec; 11(6):563-78. PubMed ID: 1782650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G protein-coupled receptor rhodopsin: a prospectus.
    Filipek S; Stenkamp RE; Teller DC; Palczewski K
    Annu Rev Physiol; 2003; 65():851-79. PubMed ID: 12471166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulations of rhodopsin tetrameter.
    Witt M; Ciarkowski J; Czaplewski C
    Protein Pept Lett; 2007; 14(4):381-7. PubMed ID: 17504096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.