These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25697524)

  • 21. Atomic-force microscopy: Rhodopsin dimers in native disc membranes.
    Fotiadis D; Liang Y; Filipek S; Saperstein DA; Engel A; Palczewski K
    Nature; 2003 Jan; 421(6919):127-8. PubMed ID: 12520290
    [No Abstract]   [Full Text] [Related]  

  • 22. Single-Molecule Force Spectroscopy of Transmembrane β-Barrel Proteins.
    Thoma J; Sapra KT; Müller DJ
    Annu Rev Anal Chem (Palo Alto Calif); 2018 Jun; 11(1):375-395. PubMed ID: 29894225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic force microscopy for the study of membrane proteins.
    Fotiadis D
    Curr Opin Biotechnol; 2012 Aug; 23(4):510-5. PubMed ID: 22176750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force Spectroscopy of Single Protein Molecules Using an Atomic Force Microscope.
    Scholl ZN; Li Q; Josephs E; Apostolidou D; Marszalek PE
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30882788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes.
    Suda K; Filipek S; Palczewski K; Engel A; Fotiadis D
    Mol Membr Biol; 2004; 21(6):435-46. PubMed ID: 15764373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes.
    Buzhynskyy N; Salesse C; Scheuring S
    J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved conformational stability of the visual G protein-coupled receptor rhodopsin by specific interaction with docosahexaenoic acid phospholipid.
    Sánchez-Martín MJ; Ramon E; Torrent-Burgués J; Garriga P
    Chembiochem; 2013 Mar; 14(5):639-44. PubMed ID: 23447332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-molecule studies of membrane proteins.
    Müller DJ; Sapra KT; Scheuring S; Kedrov A; Frederix PL; Fotiadis D; Engel A
    Curr Opin Struct Biol; 2006 Aug; 16(4):489-95. PubMed ID: 16797964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional structure of the cytoplasmic face of the G protein receptor rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1997 Aug; 36(32):9649-54. PubMed ID: 9289017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AFM-Based Single-Molecule Force Spectroscopy of Proteins.
    Scholl ZN; Marszalek PE
    Methods Mol Biol; 2018; 1814():35-47. PubMed ID: 29956225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deuterium NMR structure of retinal in the ground state of rhodopsin.
    Salgado GF; Struts AV; Tanaka K; Fujioka N; Nakanishi K; Brown MF
    Biochemistry; 2004 Oct; 43(40):12819-28. PubMed ID: 15461454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From valleys to ridges: exploring the dynamic energy landscape of single membrane proteins.
    Janovjak H; Sapra KT; Kedrov A; Müller DJ
    Chemphyschem; 2008 May; 9(7):954-66. PubMed ID: 18348129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging and interrogating native membrane proteins using the atomic force microscope.
    Engel A
    Methods Mol Biol; 2011; 736():153-67. PubMed ID: 21660727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy.
    Kedrov A; Janovjak H; Sapra KT; Müller DJ
    Annu Rev Biophys Biomol Struct; 2007; 36():233-60. PubMed ID: 17311527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations.
    Sgourakis NG; Garcia AE
    J Mol Biol; 2010 Apr; 398(1):161-73. PubMed ID: 20184892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure and function of cell membranes studied by atomic force microscopy.
    Shi Y; Cai M; Zhou L; Wang H
    Semin Cell Dev Biol; 2018 Jan; 73():31-44. PubMed ID: 28723581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomic force microscopy and spectroscopy of native membrane proteins.
    Müller DJ; Engel A
    Nat Protoc; 2007; 2(9):2191-7. PubMed ID: 17853875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oligomeric state of rhodopsin within rhodopsin-transducin complex probed with succinylated concanavalin A.
    Jastrzebska B
    Methods Mol Biol; 2015; 1271():221-33. PubMed ID: 25697527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhodopsin activation switches in a native membrane environment.
    Lüdeke S; Mahalingam M; Vogel R
    Photochem Photobiol; 2009; 85(2):437-41. PubMed ID: 19267869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.