These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25697525)

  • 21. New views on phototransduction from atomic force microscopy and single molecule force spectroscopy on native rods.
    Maity S; Ilieva N; Laio A; Torre V; Mazzolini M
    Sci Rep; 2017 Sep; 7(1):12000. PubMed ID: 28931892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function.
    Jastrzebska B; Debinski A; Filipek S; Palczewski K
    Prog Lipid Res; 2011 Jul; 50(3):267-77. PubMed ID: 21435354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ants go marching two by two: oligomeric structure of G-protein-coupled receptors.
    Javitch JA
    Mol Pharmacol; 2004 Nov; 66(5):1077-82. PubMed ID: 15319448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryo-EM structure of the native rhodopsin dimer in nanodiscs.
    Zhao DY; Pöge M; Morizumi T; Gulati S; Van Eps N; Zhang J; Miszta P; Filipek S; Mahamid J; Plitzko JM; Baumeister W; Ernst OP; Palczewski K
    J Biol Chem; 2019 Sep; 294(39):14215-14230. PubMed ID: 31399513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholesterol in the rod outer segment: A complex role in a "simple" system.
    Albert A; Alexander D; Boesze-Battaglia K
    Chem Phys Lipids; 2016 Sep; 199():94-105. PubMed ID: 27216754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurements of rhodopsin diffusion within signaling membrane microcompartments in live photoreceptors.
    Najafi M; Calvert PD
    Methods Mol Biol; 2015; 1271():309-23. PubMed ID: 25697532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The G protein-coupled receptor rhodopsin: a historical perspective.
    Hofmann L; Palczewski K
    Methods Mol Biol; 2015; 1271():3-18. PubMed ID: 25697513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of packing density on rhodopsin stability and function in polyunsaturated membranes.
    Niu SL; Mitchell DC
    Biophys J; 2005 Sep; 89(3):1833-40. PubMed ID: 15980173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes.
    Kaneshige Y; Hayashi F; Morigaki K; Tanimoto Y; Yamashita H; Fujii M; Awazu A
    PLoS One; 2020; 15(2):e0226123. PubMed ID: 32032370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A G protein-coupled receptor at work: the rhodopsin model.
    Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP
    Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atomic force microscopy for the study of membrane proteins.
    Fotiadis D
    Curr Opin Biotechnol; 2012 Aug; 23(4):510-5. PubMed ID: 22176750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression and localization of an exogenous G protein-coupled receptor fused with the rhodopsin C-terminal sequence in the retinal rod cells of knockin mice.
    Kodama T; Imai H; Doi T; Chisaka O; Shichida Y; Fujiyoshi Y
    Exp Eye Res; 2005 Jun; 80(6):859-69. PubMed ID: 15939043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and functional properties of rhodopsin from rod outer segment disk and plasma membrane.
    Hsu YT; Wong SY; Connell GJ; Molday RS
    Biochim Biophys Acta; 1993 Jan; 1145(1):85-92. PubMed ID: 8422414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved conformational stability of the visual G protein-coupled receptor rhodopsin by specific interaction with docosahexaenoic acid phospholipid.
    Sánchez-Martín MJ; Ramon E; Torrent-Burgués J; Garriga P
    Chembiochem; 2013 Mar; 14(5):639-44. PubMed ID: 23447332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging and interrogating native membrane proteins using the atomic force microscope.
    Engel A
    Methods Mol Biol; 2011; 736():153-67. PubMed ID: 21660727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detecting molecular interactions that stabilize native bovine rhodopsin.
    Tanuj Sapra K; Park PS; Filipek S; Engel A; Müller DJ; Palczewski K
    J Mol Biol; 2006 Apr; 358(1):255-69. PubMed ID: 16519899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface.
    Filipek S; Krzysko KA; Fotiadis D; Liang Y; Saperstein DA; Engel A; Palczewski K
    Photochem Photobiol Sci; 2004 Jun; 3(6):628-38. PubMed ID: 15170495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seeing and sensing single G protein-coupled receptors by atomic force microscopy.
    Sapra KT; Spoerri PM; Engel A; Alsteens D; Müller DJ
    Curr Opin Cell Biol; 2019 Apr; 57():25-32. PubMed ID: 30412846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers.
    Periole X; Knepp AM; Sakmar TP; Marrink SJ; Huber T
    J Am Chem Soc; 2012 Jul; 134(26):10959-65. PubMed ID: 22679925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer on hydrophobic substrates and AFM imaging of membrane proteins reconstituted in planar lipid bilayers.
    Seantier B; Dezi M; Gubellini F; Berquand A; Godefroy C; Dosset P; Lévy D; Milhiet PE
    J Mol Recognit; 2011; 24(3):461-6. PubMed ID: 21504024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.