BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25697531)

  • 1. Monitoring of rhodopsin trafficking and mistrafficking in live photoreceptors.
    Lodowski KH; Imanishi Y
    Methods Mol Biol; 2015; 1271():293-307. PubMed ID: 25697531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disrupted Plasma Membrane Protein Homeostasis in a
    Ropelewski P; Imanishi Y
    J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin.
    Lodowski KH; Lee R; Ropelewski P; Nemet I; Tian G; Imanishi Y
    J Neurosci; 2013 Aug; 33(34):13621-38. PubMed ID: 23966685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms.
    Nemet I; Ropelewski P; Imanishi Y
    Prog Mol Biol Transl Sci; 2015; 132():39-71. PubMed ID: 26055054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis.
    Tian G; Lodowski KH; Lee R; Imanishi Y
    J Comp Neurol; 2014 Nov; 522(16):3577-3589. PubMed ID: 24855015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light regulates the ciliary protein transport and outer segment disc renewal of mammalian photoreceptors.
    Hsu YC; Chuang JZ; Sung CH
    Dev Cell; 2015 Mar; 32(6):731-42. PubMed ID: 25805137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis.
    Nemet I; Tian G; Imanishi Y
    J Neurosci; 2014 Jun; 34(24):8164-74. PubMed ID: 24920621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-Golgi trafficking of rhodopsin in retinal photoreceptors.
    Deretic D
    Eye (Lond); 1998; 12 ( Pt 3b)():526-30. PubMed ID: 9775213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small GTPases Rab8a and Rab11a Are Dispensable for Rhodopsin Transport in Mouse Photoreceptors.
    Ying G; Gerstner CD; Frederick JM; Boye SL; Hauswirth WW; Baehr W
    PLoS One; 2016; 11(8):e0161236. PubMed ID: 27529348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis.
    Tam BM; Moritz OL; Hurd LB; Papermaster DS
    J Cell Biol; 2000 Dec; 151(7):1369-80. PubMed ID: 11134067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.
    Wolfrum U; Schmitt A
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):95-107. PubMed ID: 10891855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors.
    Deretic D; Papermaster DS
    J Cell Sci; 1993 Nov; 106 ( Pt 3)():803-13. PubMed ID: 8308063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors.
    Concepcion F; Mendez A; Chen J
    Vision Res; 2002 Feb; 42(4):417-26. PubMed ID: 11853757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predominant rod photoreceptor degeneration in Leber congenital amaurosis.
    van der Spuy J; Munro PM; Luthert PJ; Preising MN; Bek T; Heegaard S; Cheetham ME
    Mol Vis; 2005 Jul; 11():542-53. PubMed ID: 16052170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.
    Haeri M; Knox BE
    PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of Rhodopsin Dimerization in Mouse Rod Photoreceptors by Synthetic Peptides Targeting Dimer Interface.
    Kumar S; Lambert A; Rainier J; Fu Y
    Methods Mol Biol; 2018; 1753():115-128. PubMed ID: 29564785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors.
    Najafi M; Haeri M; Knox BE; Schiesser WE; Calvert PD
    J Gen Physiol; 2012 Sep; 140(3):249-66. PubMed ID: 22891277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods.
    Moritz OL; Tam BM; Hurd LL; Peränen J; Deretic D; Papermaster DS
    Mol Biol Cell; 2001 Aug; 12(8):2341-51. PubMed ID: 11514620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.