These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25697533)

  • 21. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle.
    Redmond TM; Yu S; Lee E; Bok D; Hamasaki D; Chen N; Goletz P; Ma JX; Crouch RK; Pfeifer K
    Nat Genet; 1998 Dec; 20(4):344-51. PubMed ID: 9843205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interphotoreceptor retinoid-binding protein is the physiologically relevant carrier that removes retinol from rod photoreceptor outer segments.
    Wu Q; Blakeley LR; Cornwall MC; Crouch RK; Wiggert BN; Koutalos Y
    Biochemistry; 2007 Jul; 46(29):8669-79. PubMed ID: 17602665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate.
    Kaylor JJ; Xu T; Ingram NT; Tsan A; Hakobyan H; Fain GL; Travis GH
    Nat Commun; 2017 May; 8(1):16. PubMed ID: 28473692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interphotoreceptor retinoid-binding protein (IRBP) promotes the release of all-trans retinol from the isolated retina following rhodopsin bleaching illumination.
    Qtaishat NM; Wiggert B; Pepperberg DR
    Exp Eye Res; 2005 Oct; 81(4):455-63. PubMed ID: 15935345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation, conversion, and utilization of isorhodopsin, rhodopsin, and porphyropsin by rod photoreceptors in the Xenopus retina.
    Witkovsky P; Engbretson GA; Ripps H
    J Gen Physiol; 1978 Dec; 72(6):821-36. PubMed ID: 731199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution and axial diffusion of retinol in bleached rod outer segments of frogs (Rana pipiens).
    Kaplan MW
    Exp Eye Res; 1985 May; 40(5):721-9. PubMed ID: 3874086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron-induced fluorescence in the retina: dependence on vitamin A.
    Katz ML; Christianson JS; Gao CL; Handelman GJ
    Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3613-24. PubMed ID: 8088951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A photic visual cycle of rhodopsin regeneration is dependent on Rgr.
    Chen P; Hao W; Rife L; Wang XP; Shen D; Chen J; Ogden T; Van Boemel GB; Wu L; Yang M; Fong HK
    Nat Genet; 2001 Jul; 28(3):256-60. PubMed ID: 11431696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitamin A activates rhodopsin and sensitizes it to ultraviolet light.
    Miyazono S; Isayama T; Delori FC; Makino CL
    Vis Neurosci; 2011 Nov; 28(6):485-97. PubMed ID: 22192505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamine is the only amino acid that can adequately support the generation of NADPH in rod photoreceptors.
    Adler L; Chen C; Koutalos Y
    Exp Eye Res; 2024 Sep; 246():110018. PubMed ID: 39111651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cis-trans isomers of vitamin A and retinene in the rhodopsin system.
    HUBBARD R; WALD G
    J Gen Physiol; 1952 Nov; 36(2):269-315. PubMed ID: 13011282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation.
    Blakeley LR; Chen C; Chen CK; Chen J; Crouch RK; Travis GH; Koutalos Y
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3483-91. PubMed ID: 21398289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective utilization of vitamins A1 and A2 by goldfish photoreceptors.
    Tsin AT; Beatty DD; Bridges CD; Alvarez R
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1324-7. PubMed ID: 6885318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye.
    Imanishi Y; Batten ML; Piston DW; Baehr W; Palczewski K
    J Cell Biol; 2004 Feb; 164(3):373-83. PubMed ID: 14745001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
    Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP
    J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Regeneration of rhodopsin in marine teleost fishes in the presence of exogenic of 11-cis-and all trans-retinals].
    Shukoliukov SA; Chizhevich EP; Korchagin VP; Dikarev VP
    Biokhimiia; 1977 Oct; 42(10):1747-54. PubMed ID: 922064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitamin A metabolism in rod and cone visual cycles.
    Saari JC
    Annu Rev Nutr; 2012 Aug; 32():125-45. PubMed ID: 22809103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A palmitoylation switch mechanism in the regulation of the visual cycle.
    Xue L; Gollapalli DR; Maiti P; Jahng WJ; Rando RR
    Cell; 2004 Jun; 117(6):761-71. PubMed ID: 15186777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinopathy in mice induced by disrupted all-trans-retinal clearance.
    Maeda A; Maeda T; Golczak M; Palczewski K
    J Biol Chem; 2008 Sep; 283(39):26684-93. PubMed ID: 18658157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.