These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25697696)

  • 1. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.
    Tang S; Wang XM; Mao YQ; Zhao Y; Yang HW; Xie YF
    Water Res; 2015 Apr; 73():342-52. PubMed ID: 25697696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation.
    Tang S; Wang XM; Yang HW; Xie YF
    Chemosphere; 2013 Jan; 90(4):1563-7. PubMed ID: 23079162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Influencing factors and reaction mechanism of chloroacetic acid reduction by cast iron].
    Tang S; Yang HW; Wang XM; Xie YF
    Huan Jing Ke Xue; 2014 Mar; 35(3):972-8. PubMed ID: 24881385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical dechlorination of chloroacetic acids (CAAs) using hemoglobin-loaded carbon nanotube electrode.
    Li YP; Cao HB; Zhang Y
    Chemosphere; 2006 Apr; 63(2):359-64. PubMed ID: 16185744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and kinetics of halogenated compound removal by metallic iron: Transport in solution, diffusion and reduction within corrosion films.
    Tang S; Wang XM; Liu ST; Yang HW; Xie YF; Yang XY
    Chemosphere; 2017 Jul; 178():119-128. PubMed ID: 28319739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dissolved oxygen and iron aging on the reduction of trichloronitromethane, trichloracetonitrile, and trichloropropanone.
    Lee JY; Hozalski RM; Arnold WA
    Chemosphere; 2007 Feb; 66(11):2127-35. PubMed ID: 17095038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of haloacetic acid reactions with Fe(0).
    Zhang L; Arnold WA; Hozalski RM
    Environ Sci Technol; 2004 Dec; 38(24):6881-9. PubMed ID: 15669353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+.
    Huang YH; Zhang TC
    Water Res; 2005 May; 39(9):1751-60. PubMed ID: 15899273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.
    Esclapez MD; Díez-García MI; Sàez V; Bonete P; González-García J
    Environ Technol; 2013; 34(1-4):383-93. PubMed ID: 23530352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically active carbon filtration for haloacetic acid removal from swimming pool water.
    Tang HL; Xie YF
    Sci Total Environ; 2016 Jan; 541():58-64. PubMed ID: 26398451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.
    Klas S; Kirk DW
    J Hazard Mater; 2013 May; 252-253():77-82. PubMed ID: 23500792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid removal of trace haloacetic acids from drinking water by a continuous adsorption process using graphene oxide.
    Liu Z; Zhang Z; Peng J; Wu J; Huo Y
    Environ Technol; 2022 Apr; 43(10):1544-1550. PubMed ID: 33089761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of THMs and HAAs in low TOC surface water.
    Kim J
    Environ Res; 2009 Feb; 109(2):158-65. PubMed ID: 19135189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering chlorine reactivity of haloacetic acid precursors in inland lakes.
    Zeng T; Arnold WA
    Environ Sci Technol; 2014; 48(1):139-48. PubMed ID: 24299068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters.
    Ellis DA; Hanson ML; Sibley PK; Shahid T; Fineberg NA; Solomon KR; Muir DC; Mabury SA
    Chemosphere; 2001 Jan; 42(3):309-18. PubMed ID: 11100931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous removal of diclofenac by plated elemental iron: bimetallic systems.
    Ghauch A; Abou Assi H; Bdeir S
    J Hazard Mater; 2010 Oct; 182(1-3):64-74. PubMed ID: 20580154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.