BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 25697761)

  • 1. Biophysical methods for the characterization of PTEN/lipid bilayer interactions.
    Harishchandra RK; Neumann BM; Gericke A; Ross AH
    Methods; 2015 May; 77-78():125-35. PubMed ID: 25697761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane association of the PTEN tumor suppressor: electrostatic interaction with phosphatidylserine-containing bilayers and regulatory role of the C-terminal tail.
    Shenoy SS; Nanda H; Lösche M
    J Struct Biol; 2012 Dec; 180(3):394-408. PubMed ID: 23073177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutant form of PTEN linked to autism.
    Redfern RE; Daou MC; Li L; Munson M; Gericke A; Ross AH
    Protein Sci; 2010 Oct; 19(10):1948-56. PubMed ID: 20718038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the membrane-associated state of the PTEN tumor suppressor protein.
    Lumb CN; Sansom MS
    Biophys J; 2013 Feb; 104(3):613-21. PubMed ID: 23442912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity.
    Meuillet EJ; Mahadevan D; Berggren M; Coon A; Powis G
    Arch Biochem Biophys; 2004 Sep; 429(2):123-33. PubMed ID: 15313215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of PTEN subcellular localization.
    Bononi A; Pinton P
    Methods; 2015 May; 77-78():92-103. PubMed ID: 25312582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of the auxilin-1 PTEN-like domain with model membranes result in nanoclustering of phosphatidyl inositol phosphates.
    Kalli AC; Morgan G; Sansom MS
    Biophys J; 2013 Jul; 105(1):137-45. PubMed ID: 23823232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of phosphatase and tensin homologue (PTEN) proteins with phosphatidylinositol phosphates: insights from molecular dynamics simulations of PTEN and voltage sensitive phosphatase.
    Kalli AC; Devaney I; Sansom MS
    Biochemistry; 2014 Mar; 53(11):1724-32. PubMed ID: 24588644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of PTEN function as a PIP3 gatekeeper through membrane interaction.
    Vazquez F; Devreotes P
    Cell Cycle; 2006 Jul; 5(14):1523-7. PubMed ID: 16861931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTEN inhibits BMI1 function independently of its phosphatase activity.
    Fan C; He L; Kapoor A; Rybak AP; De Melo J; Cutz JC; Tang D
    Mol Cancer; 2009 Nov; 8():98. PubMed ID: 19903340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane association of the PTEN tumor suppressor: neutron scattering and MD simulations reveal the structure of protein-membrane complexes.
    Nanda H; Heinrich F; Lösche M
    Methods; 2015 May; 77-78():136-46. PubMed ID: 25461777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate.
    Campbell RB; Liu F; Ross AH
    J Biol Chem; 2003 Sep; 278(36):33617-20. PubMed ID: 12857747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN.
    Davidson L; Maccario H; Perera NM; Yang X; Spinelli L; Tibarewal P; Glancy B; Gray A; Weijer CJ; Downes CP; Leslie NR
    Oncogene; 2010 Feb; 29(5):687-97. PubMed ID: 19915616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule imaging of PI(4,5)P
    Yoshioka D; Fukushima S; Koteishi H; Okuno D; Ide T; Matsuoka S; Ueda M
    Commun Biol; 2020 Feb; 3(1):92. PubMed ID: 32111929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.
    Ziemba BP; Falke JJ
    Chem Phys Lipids; 2013; 172-173():67-77. PubMed ID: 23701821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and structural approaches to investigate PTEN function and regulation.
    Viennet T; Rodriguez Ospina S; Lu Y; Cui A; Arthanari H; Dempsey DR
    Methods Enzymol; 2023; 682():289-318. PubMed ID: 36948705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Characterization of Specific Protein-Lipid Interactions Using Molecular Simulation.
    Corey RA; Sansom MSP; Stansfeld PJ
    Methods Mol Biol; 2021; 2315():121-139. PubMed ID: 34302674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening the conformation is a master switch for the dual localization and phosphatase activity of PTEN.
    Nguyen HN; Yang JM; Miyamoto T; Itoh K; Rho E; Zhang Q; Inoue T; Devreotes PN; Sesaki H; Iijima M
    Sci Rep; 2015 Jul; 5():12600. PubMed ID: 26216063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PTEN protein phosphatase activity correlates with control of gene expression and invasion, a tumor-suppressing phenotype, but not with AKT activity.
    Tibarewal P; Zilidis G; Spinelli L; Schurch N; Maccario H; Gray A; Perera NM; Davidson L; Barton GJ; Leslie NR
    Sci Signal; 2012 Feb; 5(213):ra18. PubMed ID: 22375056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatase and tensin homologue deleted on chromosome 10: extending its PTENtacles.
    Stiles BL
    Int J Biochem Cell Biol; 2009 Apr; 41(4):757-61. PubMed ID: 18950730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.