These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. SOMP: web server for in silico prediction of sites of metabolism for drug-like compounds. Rudik A; Dmitriev A; Lagunin A; Filimonov D; Poroikov V Bioinformatics; 2015 Jun; 31(12):2046-8. PubMed ID: 25777527 [TBL] [Abstract][Full Text] [Related]
5. Improved Prediction of CYP-Mediated Metabolism with Chemical Fingerprints. Zaretzki J; Boehm KM; Swamidass SJ J Chem Inf Model; 2015 May; 55(5):972-82. PubMed ID: 25871613 [TBL] [Abstract][Full Text] [Related]
6. Alignment-Based Prediction of Sites of Metabolism. de Bruyn Kops C; Friedrich NO; Kirchmair J J Chem Inf Model; 2017 Jun; 57(6):1258-1264. PubMed ID: 28520411 [TBL] [Abstract][Full Text] [Related]
7. Metabolism site prediction based on xenobiotic structural formulas and PASS prediction algorithm. Rudik AV; Dmitriev AV; Lagunin AA; Filimonov DA; Poroikov VV J Chem Inf Model; 2014 Feb; 54(2):498-507. PubMed ID: 24417355 [TBL] [Abstract][Full Text] [Related]
10. Designing better drugs: predicting cytochrome P450 metabolism. de Groot MJ Drug Discov Today; 2006 Jul; 11(13-14):601-6. PubMed ID: 16793528 [TBL] [Abstract][Full Text] [Related]
11. P450 structures and oxidative metabolism of xenobiotics. Lewis DF Pharmacogenomics; 2003 Jul; 4(4):387-95. PubMed ID: 12831319 [TBL] [Abstract][Full Text] [Related]
12. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. Kumar S BMC Res Notes; 2015 Jan; 8():9. PubMed ID: 25595103 [TBL] [Abstract][Full Text] [Related]
13. Identification of Tazarotenic Acid as the First Xenobiotic Substrate of Human Retinoic Acid Hydroxylase CYP26A1 and CYP26B1. Foti RS; Isoherranen N; Zelter A; Dickmann LJ; Buttrick BR; Diaz P; Douguet D J Pharmacol Exp Ther; 2016 May; 357(2):281-92. PubMed ID: 26937021 [TBL] [Abstract][Full Text] [Related]
14. Modeling of human cytochrome p450-mediated drug metabolism using unsupervised machine learning approach. Korolev D; Balakin KV; Nikolsky Y; Kirillov E; Ivanenkov YA; Savchuk NP; Ivashchenko AA; Nikolskaya T J Med Chem; 2003 Aug; 46(17):3631-43. PubMed ID: 12904067 [TBL] [Abstract][Full Text] [Related]
15. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. de Groot MJ; Vermeulen NP; Kramer JD; van Acker FA; Donné-Op den Kelder GM Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262 [TBL] [Abstract][Full Text] [Related]
16. Mechanism-based inactivation of human cytochromes p450s: experimental characterization, reactive intermediates, and clinical implications. Hollenberg PF; Kent UM; Bumpus NN Chem Res Toxicol; 2008 Jan; 21(1):189-205. PubMed ID: 18052110 [TBL] [Abstract][Full Text] [Related]
17. FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. Šícho M; de Bruyn Kops C; Stork C; Svozil D; Kirchmair J J Chem Inf Model; 2017 Aug; 57(8):1832-1846. PubMed ID: 28782945 [TBL] [Abstract][Full Text] [Related]
18. A pragmatic approach using first-principle methods to address site of metabolism with implications for reactive metabolite formation. Hsiao YW; Petersson C; Svensson MA; Norinder U J Chem Inf Model; 2012 Mar; 52(3):686-95. PubMed ID: 22299574 [TBL] [Abstract][Full Text] [Related]
19. Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Johnson EF; Stout CD Biochem Biophys Res Commun; 2005 Dec; 338(1):331-6. PubMed ID: 16157296 [TBL] [Abstract][Full Text] [Related]
20. Toward Computational Understanding of Molecular Recognition in the Human Metabolizing Cytochrome P450s. Kontoyianni M; Lacy B Curr Med Chem; 2018; 25(28):3353-3373. PubMed ID: 29484977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]