BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25697901)

  • 1. Vanadium removal from LD converter slag using bacteria and fungi.
    Mirazimi SM; Abbasalipour Z; Rashchi F
    J Environ Manage; 2015 Apr; 153():144-51. PubMed ID: 25697901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.
    Hocheng H; Su C; Jadhav UU
    Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of three different bioleaching systems for Li recovery from lepidolite.
    Sedlakova-Kadukova J; Marcincakova R; Luptakova A; Vojtko M; Fujda M; Pristas P
    Sci Rep; 2020 Sep; 10(1):14594. PubMed ID: 32884068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology.
    Srichandan H; Pathak A; Kim DJ; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1740-53. PubMed ID: 25320861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil.
    Ko MS; Park HS; Kim KW; Lee JU
    Environ Geochem Health; 2013 Dec; 35(6):727-33. PubMed ID: 23709230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.
    Bredberg K; Karlsson HT; Holst O
    Bioresour Technol; 2004 Mar; 92(1):93-6. PubMed ID: 14643991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.
    Zeng J; Gou M; Tang YQ; Li GY; Sun ZY; Kida K
    Bioresour Technol; 2016 Oct; 218():859-66. PubMed ID: 27434303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
    Sharma M; Bisht V; Singh B; Jain P; Mandal AK; Lal B; Sarma PM
    Indian J Exp Biol; 2015 Jun; 53(6):388-94. PubMed ID: 26155679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans.
    Mikoda B; Potysz A; Kmiecik E
    J Environ Manage; 2019 Apr; 236():436-445. PubMed ID: 30769253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of manganese from electrolytic manganese residue by bioleaching.
    Xin B; Chen B; Duan N; Zhou C
    Bioresour Technol; 2011 Jan; 102(2):1683-7. PubMed ID: 21050747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralogical characterisation and magnetic separation of vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv W; Pei G; Lv X; Liu S
    Waste Manag Res; 2018 Nov; 36(11):1083-1091. PubMed ID: 30198425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.
    Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG
    J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species.
    Kim MJ; Seo JY; Choi YS; Kim GH
    Waste Manag; 2016 May; 51():168-173. PubMed ID: 26584557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins.
    Gomes HI; Jones A; Rogerson M; Greenway GM; Lisbona DF; Burke IT; Mayes WM
    J Environ Manage; 2017 Feb; 187():384-392. PubMed ID: 27836554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil.
    Liu HL; Chiu CW; Cheng YC
    Biotechnol Bioeng; 2003 Sep; 83(6):638-45. PubMed ID: 12889028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).
    Işıldar A; van de Vossenberg J; Rene ER; van Hullebusch ED; Lens PN
    Waste Manag; 2016 Nov; 57():149-157. PubMed ID: 26704063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching of vanadium from waste V
    Wang S; Xie Y; Yan W; Wu X; Wang CT; Zhao F
    Sci Total Environ; 2018 Oct; 639():497-503. PubMed ID: 29800843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial leaching of waste solder for recovery of metal.
    Hocheng H; Hong T; Jadhav U
    Appl Biochem Biotechnol; 2014 May; 173(1):193-204. PubMed ID: 24634142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.