BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25697959)

  • 1. Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1).
    Kaintz C; Mayer RL; Jirsa F; Halbwirth H; Rompel A
    FEBS Lett; 2015 Mar; 589(7):789-97. PubMed ID: 25697959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation.
    Kaintz C; Molitor C; Thill J; Kampatsikas I; Michael C; Halbwirth H; Rompel A
    FEBS Lett; 2014 Sep; 588(18):3417-26. PubMed ID: 25109778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latent and active aurone synthase from petals of C. grandiflora: a polyphenol oxidase with unique characteristics.
    Molitor C; Mauracher SG; Pargan S; Mayer RL; Halbwirth H; Rompel A
    Planta; 2015 Sep; 242(3):519-37. PubMed ID: 25697287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.
    Molitor C; Mauracher SG; Rompel A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora.
    Molitor C; Mauracher SG; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):746-51. PubMed ID: 26057806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase.
    Kampatsikas I; Pretzler M; Rompel A
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20940-20945. PubMed ID: 32701181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of a tetrameric dandelion polyphenol oxidase (PPO-6) reveals the site of subunit interaction.
    Dirks-Hofmeister ME; Inlow JK; Moerschbacher BM
    Plant Mol Biol; 2012 Sep; 80(2):203-17. PubMed ID: 22814940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of the CuA redox site in cytochrome c oxidase into a mononuclear copper center.
    Zickermann V; Wittershagen A; Kolbesen BO; Ludwig B
    Biochemistry; 1997 Mar; 36(11):3232-6. PubMed ID: 9116000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, sequencing, purification, and crystal structure of Grenache (Vitis vinifera) polyphenol oxidase.
    Virador VM; Reyes Grajeda JP; Blanco-Labra A; Mendiola-Olaya E; Smith GM; Moreno A; Whitaker JR
    J Agric Food Chem; 2010 Jan; 58(2):1189-201. PubMed ID: 20039636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center.
    Kelly M; Lappalainen P; Talbo G; Haltia T; van der Oost J; Saraste M
    J Biol Chem; 1993 Aug; 268(22):16781-7. PubMed ID: 8393874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans.
    Farrar JA; Lappalainen P; Zumft WG; Saraste M; Thomson AJ
    Eur J Biochem; 1995 Aug; 232(1):294-303. PubMed ID: 7556164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameters that enhance the bacterial expression of active plant polyphenol oxidases.
    Dirks-Hofmeister ME; Kolkenbrock S; Moerschbacher BM
    PLoS One; 2013; 8(10):e77291. PubMed ID: 24204791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Polyphenol Oxidase Catalyzes Aurone Synthesis in Marchantia polymorpha.
    Furudate H; Manabe M; Oshikiri H; Matsushita A; Watanabe B; Waki T; Nakayama T; Kubo H; Takanashi K
    Plant Cell Physiol; 2023 Jun; 64(6):637-645. PubMed ID: 36947436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer between cytochrome c and the isolated CuA domain: identification of substrate-binding residues in cytochrome c oxidase.
    Lappalainen P; Watmough NJ; Greenwood C; Saraste M
    Biochemistry; 1995 May; 34(17):5824-30. PubMed ID: 7727443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eggplant polyphenol oxidase multigene family: cloning, phylogeny, expression analyses and immunolocalization in response to wounding.
    Shetty SM; Chandrashekar A; Venkatesh YP
    Phytochemistry; 2011 Dec; 72(18):2275-87. PubMed ID: 21945722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ formation of the first proteinogenically functionalized [TeW
    Molitor C; Bijelic A; Rompel A
    Chem Commun (Camb); 2016 Oct; 52(83):12286-12289. PubMed ID: 27722437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.