BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25698105)

  • 1. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.
    Liu YR; Cen HF; Yan JP; Zhang YW; Zhang WJ
    Plant Cell Rep; 2015 Jul; 34(7):1099-108. PubMed ID: 25698105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Transformation of Recalcitrant Upland Switchgrass Using Morphogenic Genes.
    Xu N; Kang M; Zobrist JD; Wang K; Fei SZ
    Front Plant Sci; 2021; 12():781565. PubMed ID: 35211127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.).
    Ramamoorthy R; Kumar PP
    Plant Cell Rep; 2012 Oct; 31(10):1923-31. PubMed ID: 22733209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass.
    Chen Q; Song GQ
    Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for
    Lin CY; Donohoe BS; Ahuja N; Garrity DM; Qu R; Tucker MP; Himmel ME; Wei H
    Plant Methods; 2017; 13():113. PubMed ID: 29270209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (
    Ondzighi-Assoume CA; Willis JD; Ouma WK; Allen SM; King Z; Parrott WA; Liu W; Burris JN; Lenaghan SC; Stewart CN
    Biotechnol Biofuels; 2019; 12():290. PubMed ID: 31890018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64.
    Sahoo RK; Tuteja N
    GM Crops Food; 2012; 3(2):123-8. PubMed ID: 22538224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic transformation of switchgrass.
    Xi Y; Ge Y; Wang ZY
    Methods Mol Biol; 2009; 581():53-9. PubMed ID: 19768615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass.
    Yan J; Liu Y; Wang K; Li D; Hu Q; Zhang W
    Plant Sci; 2018 Nov; 276():143-151. PubMed ID: 30348312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and reliable multi-gene transformation method for switchgrass.
    Ogawa Y; Shirakawa M; Koumoto Y; Honda M; Asami Y; Kondo Y; Hara-Nishimura I
    Plant Cell Rep; 2014 Jul; 33(7):1161-72. PubMed ID: 24700247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.).
    King ZR; Bray AL; Lafayette PR; Parrott WA
    Plant Cell Rep; 2014 Feb; 33(2):313-22. PubMed ID: 24177598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures.
    Ribas AF; Dechamp E; Champion A; Bertrand B; Combes MC; Verdeil JL; Lapeyre F; Lashermes P; Etienne H
    BMC Plant Biol; 2011 May; 11():92. PubMed ID: 21595964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro plant regeneration and genetic transformation of Dichanthium annulatum.
    Kumar J; Shukla SM; Bhat V; Gupta S; Gupta MG
    DNA Cell Biol; 2005 Nov; 24(11):670-9. PubMed ID: 16274291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchgrass (Panicum virgatum L.) Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US.
    Ecker G; Zalapa J; Auer C
    PLoS One; 2015; 10(6):e0130414. PubMed ID: 26125564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of 1,030 genomic SSR markers in switchgrass.
    Wang YW; Samuels TD; Wu YQ
    Theor Appl Genet; 2011 Mar; 122(4):677-86. PubMed ID: 20978736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.).
    Bahri BA; Daverdin G; Xu X; Cheng JF; Barry KW; Brummer EC; Devos KM
    BMC Evol Biol; 2018 Jun; 18(1):91. PubMed ID: 29898656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China.
    Ma Y; An Y; Shui J; Sun Z
    Plant Sci; 2011 Dec; 181(6):638-43. PubMed ID: 21958705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL mapping of winter dormancy and associated traits in two switchgrass pseudo-F1 populations: lowland x lowland and lowland x upland.
    M Razar R; Missaoui A
    BMC Plant Biol; 2020 Nov; 20(1):537. PubMed ID: 33256587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fall armyworm (Spodoptera frugiperda Smith) feeding elicits differential defense responses in upland and lowland switchgrass.
    Palmer NA; Basu S; Heng-Moss T; Bradshaw JD; Sarath G; Louis J
    PLoS One; 2019; 14(6):e0218352. PubMed ID: 31194847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes.
    Moghaieb RE; El-Arabi NI; Momtaz OA; Youssef SS; Soliman MH
    GM Crops; 2010; 1(2):87-93. PubMed ID: 21865876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.