These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25698105)

  • 1. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.
    Liu YR; Cen HF; Yan JP; Zhang YW; Zhang WJ
    Plant Cell Rep; 2015 Jul; 34(7):1099-108. PubMed ID: 25698105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Transformation of Recalcitrant Upland Switchgrass Using Morphogenic Genes.
    Xu N; Kang M; Zobrist JD; Wang K; Fei SZ
    Front Plant Sci; 2021; 12():781565. PubMed ID: 35211127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.).
    Ramamoorthy R; Kumar PP
    Plant Cell Rep; 2012 Oct; 31(10):1923-31. PubMed ID: 22733209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass.
    Chen Q; Song GQ
    Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for
    Lin CY; Donohoe BS; Ahuja N; Garrity DM; Qu R; Tucker MP; Himmel ME; Wei H
    Plant Methods; 2017; 13():113. PubMed ID: 29270209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (
    Ondzighi-Assoume CA; Willis JD; Ouma WK; Allen SM; King Z; Parrott WA; Liu W; Burris JN; Lenaghan SC; Stewart CN
    Biotechnol Biofuels; 2019; 12():290. PubMed ID: 31890018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64.
    Sahoo RK; Tuteja N
    GM Crops Food; 2012; 3(2):123-8. PubMed ID: 22538224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic transformation of switchgrass.
    Xi Y; Ge Y; Wang ZY
    Methods Mol Biol; 2009; 581():53-9. PubMed ID: 19768615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass.
    Yan J; Liu Y; Wang K; Li D; Hu Q; Zhang W
    Plant Sci; 2018 Nov; 276():143-151. PubMed ID: 30348312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and reliable multi-gene transformation method for switchgrass.
    Ogawa Y; Shirakawa M; Koumoto Y; Honda M; Asami Y; Kondo Y; Hara-Nishimura I
    Plant Cell Rep; 2014 Jul; 33(7):1161-72. PubMed ID: 24700247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.).
    King ZR; Bray AL; Lafayette PR; Parrott WA
    Plant Cell Rep; 2014 Feb; 33(2):313-22. PubMed ID: 24177598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures.
    Ribas AF; Dechamp E; Champion A; Bertrand B; Combes MC; Verdeil JL; Lapeyre F; Lashermes P; Etienne H
    BMC Plant Biol; 2011 May; 11():92. PubMed ID: 21595964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro plant regeneration and genetic transformation of Dichanthium annulatum.
    Kumar J; Shukla SM; Bhat V; Gupta S; Gupta MG
    DNA Cell Biol; 2005 Nov; 24(11):670-9. PubMed ID: 16274291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchgrass (Panicum virgatum L.) Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US.
    Ecker G; Zalapa J; Auer C
    PLoS One; 2015; 10(6):e0130414. PubMed ID: 26125564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of 1,030 genomic SSR markers in switchgrass.
    Wang YW; Samuels TD; Wu YQ
    Theor Appl Genet; 2011 Mar; 122(4):677-86. PubMed ID: 20978736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.).
    Bahri BA; Daverdin G; Xu X; Cheng JF; Barry KW; Brummer EC; Devos KM
    BMC Evol Biol; 2018 Jun; 18(1):91. PubMed ID: 29898656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China.
    Ma Y; An Y; Shui J; Sun Z
    Plant Sci; 2011 Dec; 181(6):638-43. PubMed ID: 21958705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL mapping of winter dormancy and associated traits in two switchgrass pseudo-F1 populations: lowland x lowland and lowland x upland.
    M Razar R; Missaoui A
    BMC Plant Biol; 2020 Nov; 20(1):537. PubMed ID: 33256587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fall armyworm (Spodoptera frugiperda Smith) feeding elicits differential defense responses in upland and lowland switchgrass.
    Palmer NA; Basu S; Heng-Moss T; Bradshaw JD; Sarath G; Louis J
    PLoS One; 2019; 14(6):e0218352. PubMed ID: 31194847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes.
    Moghaieb RE; El-Arabi NI; Momtaz OA; Youssef SS; Soliman MH
    GM Crops; 2010; 1(2):87-93. PubMed ID: 21865876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.