These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25698105)

  • 21. In situ embryo rescue for generation of wide intra- and interspecific hybrids of Panicum virgatum L.
    Kausch AP; Tilelli M; Hague J; Heffelfinger C; Cunha D; Moreno M; Dellaporta SL; Nelson K
    Plant Biotechnol J; 2016 Nov; 14(11):2168-2175. PubMed ID: 27154282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum.
    Evans J; Kim J; Childs KL; Vaillancourt B; Crisovan E; Nandety A; Gerhardt DJ; Richmond TA; Jeddeloh JA; Kaeppler SM; Casler MD; Buell CR
    Plant J; 2014 Sep; 79(6):993-1008. PubMed ID: 24947485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars.
    Basnayake SW; Moyle R; Birch RG
    Plant Cell Rep; 2011 Mar; 30(3):439-48. PubMed ID: 20978767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress.
    Stroup JA; Sanderson MA; Muir JP; McFarland MJ; Reed RL
    Bioresour Technol; 2003 Jan; 86(1):65-72. PubMed ID: 12421011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars.
    Zalapa JE; Price DL; Kaeppler SM; Tobias CM; Okada M; Casler MD
    Theor Appl Genet; 2011 Mar; 122(4):805-17. PubMed ID: 21104398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes.
    Murray F; Brettell R; Matthews P; Bishop D; Jacobsen J
    Plant Cell Rep; 2004 Jan; 22(6):397-402. PubMed ID: 14530864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of microRNAs responsive to arbuscular mycorrhizal fungi in Panicum virgatum (switchgrass).
    Johnson AC; Pendergast TH; Chaluvadi S; Bennetzen JL; Devos KM
    BMC Genomics; 2022 Oct; 23(1):688. PubMed ID: 36199042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field.
    Millwood R; Nageswara-Rao M; Ye R; Terry-Emert E; Johnson CR; Hanson M; Burris JN; Kwit C; Stewart CN
    BMC Biotechnol; 2017 May; 17(1):40. PubMed ID: 28464851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.).
    Guan C; Huang YH; Cui X; Liu SJ; Zhou YZ; Zhang YW
    Plant Cell Rep; 2018 Aug; 37(8):1187-1199. PubMed ID: 29802436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.
    Dutt M; Grosser JW
    Plant Cell Rep; 2010 Nov; 29(11):1251-60. PubMed ID: 20711728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest.
    Pingault L; Palmer NA; Koch KG; Heng-Moss T; Bradshaw JD; Seravalli J; Twigg P; Louis J; Sarath G
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33120946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud].
    An X; Wang B; Liu L; Jiang H; Chen J; Ye S; Chen L; Guo P; Huang X; Peng D
    Mol Biol Rep; 2014 May; 41(5):3257-69. PubMed ID: 24488319
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Li M; Wang D; Long X; Hao Z; Lu Y; Zhou Y; Peng Y; Cheng T; Shi J; Chen J
    Front Plant Sci; 2022; 13():802128. PubMed ID: 35371158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species.
    Mann DG; Lafayette PR; Abercrombie LL; King ZR; Mazarei M; Halter MC; Poovaiah CR; Baxter H; Shen H; Dixon RA; Parrott WA; Neal Stewart C
    Plant Biotechnol J; 2012 Feb; 10(2):226-36. PubMed ID: 21955653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker.
    Do PT; Lee H; Mookkan M; Folk WR; Zhang ZJ
    Plant Cell Rep; 2016 Oct; 35(10):2065-76. PubMed ID: 27350252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Switchgrass cultivar/ecotype selection and management for biofuels in the upper southeast USA.
    Lemus R; Parrish DJ; Wolf DD
    ScientificWorldJournal; 2014; 2014():937594. PubMed ID: 25105170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histological study of organogenesis in Cucumis melo L. after genetic transformation: why is it difficult to obtain transgenic plants?
    Chovelon V; Restier V; Giovinazzo N; Dogimont C; Aarrouf J
    Plant Cell Rep; 2011 Nov; 30(11):2001-11. PubMed ID: 21706229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Agrobacterium-mediated co-transformation of rice using two selectable marker genes derived from rice genome components.
    Wakasa Y; Ozawa K; Takaiwa F
    Plant Cell Rep; 2012 Nov; 31(11):2075-84. PubMed ID: 22843026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved tissue culture conditions for the emerging C
    Grant JN; Burris JN; Stewart CN; Lenaghan SC
    BMC Biotechnol; 2017 Apr; 17(1):39. PubMed ID: 28449656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene.
    Li DD; Shi W; Deng XX
    Tree Physiol; 2003 Dec; 23(17):1209-15. PubMed ID: 14597430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.