These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25698236)

  • 1. Toward patient-specific articular contact mechanics.
    Ateshian GA; Henak CR; Weiss JA
    J Biomech; 2015 Mar; 48(5):779-86. PubMed ID: 25698236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On foundations of discrete element analysis of contact in diarthrodial joints.
    Volokh KY; Chao EY; Armand M
    Mol Cell Biomech; 2007 Jun; 4(2):67-73. PubMed ID: 17937111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congruency effects on load bearing in diarthrodial joints.
    Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling axi-symmetrical joint contact with biphasic cartilage layers--an asymptotic solution.
    Wu JZ; Herzog W; Ronsky J
    J Biomech; 1996 Oct; 29(10):1263-81. PubMed ID: 8884472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method.
    Guo H; Spilker RL
    J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods.
    Ateshian GA; Kwak SD; Soslowsky LJ; Mow VC
    J Biomech; 1994 Jan; 27(1):111-24. PubMed ID: 7508940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of three-dimensional diarthrodial joint contact using penetration data and the finite element method.
    Dunbar WL; Un K; Donzelli PS; Spilker RL
    J Biomech Eng; 2001 Aug; 123(4):333-40. PubMed ID: 11563758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus.
    Danso EK; Honkanen JT; Saarakkala S; Korhonen RK
    J Biomech; 2014 Jan; 47(1):200-6. PubMed ID: 24182695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.
    Pawaskar SS; Fisher J; Jin Z
    J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in articular cartilage mechanics with meniscectomy: A novel image-based modeling approach and comparison to patterns of OA.
    Haemer JM; Song Y; Carter DR; Giori NJ
    J Biomech; 2011 Aug; 44(12):2307-12. PubMed ID: 21741046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding.
    Guo H; Shah M; Spilker RL
    Proc Inst Mech Eng H; 2014 Mar; 228(3):225-36. PubMed ID: 24496915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modelling of articular joints with biphasic cartilage: recent advances, challenges and opportunities.
    Li J; Xu J; Chen Z; Lu Y; Hua X; Jin Z
    Med Eng Phys; 2024 Apr; 126():104130. PubMed ID: 38621832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo cartilage contact deformation of human ankle joints under full body weight.
    Wan L; de Asla RJ; Rubash HE; Li G
    J Orthop Res; 2008 Aug; 26(8):1081-9. PubMed ID: 18327792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.
    Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG
    J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elliptical contact of thin biphasic cartilage layers: exact solution for monotonic loading.
    Argatov I; Mishuris G
    J Biomech; 2011 Feb; 44(4):759-61. PubMed ID: 21093864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.