These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Plant genome engineering in full bloom. Lozano-Juste J; Cutler SR Trends Plant Sci; 2014 May; 19(5):284-7. PubMed ID: 24674878 [TBL] [Abstract][Full Text] [Related]
5. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Liang Z; Zhang K; Chen K; Gao C J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457 [TBL] [Abstract][Full Text] [Related]
6. The CRISPR-Cas system for plant genome editing: advances and opportunities. Kumar V; Jain M J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9 for genome editing: progress, implications and challenges. Zhang F; Wen Y; Guo X Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067 [TBL] [Abstract][Full Text] [Related]
8. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Huang H; Zheng G; Jiang W; Hu H; Lu Y Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462 [TBL] [Abstract][Full Text] [Related]
9. Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Pellagatti A; Dolatshad H; Valletta S; Boultwood J Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103 [TBL] [Abstract][Full Text] [Related]
10. Current and future prospects for CRISPR-based tools in bacteria. Luo ML; Leenay RT; Beisel CL Biotechnol Bioeng; 2016 May; 113(5):930-43. PubMed ID: 26460902 [TBL] [Abstract][Full Text] [Related]
11. [CRISPR/Cas system for genome editing in pluripotent stem cells]. Vasil'eva EA; Melino D; Barlev NA Tsitologiia; 2015; 57(1):19-30. PubMed ID: 25872372 [TBL] [Abstract][Full Text] [Related]
12. RNA-guided genome editing in plants using a CRISPR-Cas system. Xie K; Yang Y Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122 [TBL] [Abstract][Full Text] [Related]
13. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators. Chakraborty C; Teoh SL; Das S Curr Drug Targets; 2017; 18(14):1653-1663. PubMed ID: 27231109 [TBL] [Abstract][Full Text] [Related]
15. The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs. Bayat H; Omidi M; Rajabibazl M; Sabri S; Rahimpour A J Microbiol Biotechnol; 2017 Feb; 27(2):207-218. PubMed ID: 27840399 [TBL] [Abstract][Full Text] [Related]
16. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium. Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Jo YI; Suresh B; Kim H; Ramakrishna S Biochim Biophys Acta; 2015 Dec; 1856(2):234-43. PubMed ID: 26434948 [TBL] [Abstract][Full Text] [Related]
18. CRISPR technologies for bacterial systems: Current achievements and future directions. Choi KR; Lee SY Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms. Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]