These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25698503)

  • 21. Nitrite and nitrate reduction by molybdenum centers of the nitrate reductase type: computational predictions on the catalytic mechanism.
    Silaghi-Dumitrescu R; Mich M; Matyas C; Cooper CE
    Nitric Oxide; 2012 Jan; 26(1):27-31. PubMed ID: 22138423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molybdenum and tungsten-dependent formate dehydrogenases.
    Maia LB; Moura JJ; Moura I
    J Biol Inorg Chem; 2015 Mar; 20(2):287-309. PubMed ID: 25476858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical characterization of the "very rapid" Mo(V) species generated in the oxidation of xanthine oxidase.
    Bayse CA
    Inorg Chem; 2006 Mar; 45(5):2199-202. PubMed ID: 16499383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlating C-H bond cleavage with molybdenum reduction in xanthine oxidase.
    Kirk ML; Berhane A
    Chem Biodivers; 2012 Sep; 9(9):1756-60. PubMed ID: 22976967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo.
    Maia LB; Pereira V; Mira L; Moura JJ
    Biochemistry; 2015 Jan; 54(3):685-710. PubMed ID: 25537183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective.
    Maia LB
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selectivity of thiolate ligand and preference of substrate in model reactions of dissimilatory nitrate reductase.
    Majumdar A; Pal K; Sarkar S
    Inorg Chem; 2008 Apr; 47(8):3393-401. PubMed ID: 18335980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Replica of a fishy enzyme: structure-function analogue of trimethylamine-N-oxide reductase.
    Moula G; Bose M; Sarkar S
    Inorg Chem; 2013 May; 52(9):5316-27. PubMed ID: 23594155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nature of the oxomolybdenum-thiolate pi-bond: implications for Mo-S bonding in sulfite oxidase and xanthine oxidase.
    McNaughton RL; Helton ME; Cosper MM; Enemark JH; Kirk ML
    Inorg Chem; 2004 Mar; 43(5):1625-37. PubMed ID: 14989655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states.
    Coelho C; González PJ; Moura JG; Moura I; Trincão J; João Romão M
    J Mol Biol; 2011 May; 408(5):932-48. PubMed ID: 21419779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic investigation of trimethylamine-N-oxide reduction catalysed by biomimetic molybdenum enzyme models.
    Fortino M; Marino T; Russo N; Sicilia E
    Phys Chem Chem Phys; 2016 Mar; 18(12):8428-36. PubMed ID: 26932500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Symphoria: the success of modeling the active site function of oxo-molybdoenzymes.
    Chaudhury PK; Nagarajan K; Dubey P; Sarkar S
    J Inorg Biochem; 2004 Nov; 98(11):1667-77. PubMed ID: 15522394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molybdenum and tungsten enzymes: the xanthine oxidase family.
    Brondino CD; Romão MJ; Moura I; Moura JJ
    Curr Opin Chem Biol; 2006 Apr; 10(2):109-14. PubMed ID: 16480912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reaction mechanism of formate dehydrogenase studied by computational methods.
    Dong G; Ryde U
    J Biol Inorg Chem; 2018 Dec; 23(8):1243-1254. PubMed ID: 30173398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molybdenum-containing xanthine oxidoreductases and picolinate dehydrogenases.
    Pai EF; Nishino T
    Met Ions Biol Syst; 2002; 39():431-54. PubMed ID: 11913133
    [No Abstract]   [Full Text] [Related]  

  • 37. Substrate orientation and specificity in xanthine oxidase: crystal structures of the enzyme in complex with indole-3-acetaldehyde and guanine.
    Cao H; Hall J; Hille R
    Biochemistry; 2014 Jan; 53(3):533-41. PubMed ID: 24397336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of organic nitrites to nitric oxide catalyzed by xanthine oxidase: possible role in metabolism of nitrovasodilators.
    Doel JJ; Godber BL; Goult TA; Eisenthal R; Harrison R
    Biochem Biophys Res Commun; 2000 Apr; 270(3):880-5. PubMed ID: 10772919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonance Raman studies on xanthine oxidase: observation of Mo(VI)-ligand vibrations.
    Maiti NC; Tomita T; Kitagawa T; Okamoto K; Nishino T
    J Biol Inorg Chem; 2003 Feb; 8(3):327-33. PubMed ID: 12589568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibriogigas aldehyde dehydrogenase: a member of the xanthine oxidase family.
    Boer DR; Thapper A; Brondino CD; Romão MJ; Moura JJ
    J Am Chem Soc; 2004 Jul; 126(28):8614-5. PubMed ID: 15250689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.