These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25698512)

  • 1. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.
    Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.
    Cheng C; Zhao X; Zhang M; Bai F
    FEMS Yeast Res; 2016 Mar; 16(2):fow010. PubMed ID: 26851403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Breeding of robust industrial ethanol-tolerant Saccharomyces cerevisiae strain by artificial zinc finger protein library].
    Ma C; Zhao X; Li Q; Zhang M; Kim JS; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2013 May; 29(5):612-9. PubMed ID: 24010359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.
    Liu X; Zhang X; Zhang Z
    J Biotechnol; 2014 Oct; 187():116-23. PubMed ID: 25093933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.
    Swinnen S; Henriques SF; Shrestha R; Ho PW; Sá-Correia I; Nevoigt E
    Microb Cell Fact; 2017 Jan; 16(1):7. PubMed ID: 28068993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.
    Lee Y; Nasution O; Choi E; Choi IG; Kim W; Choi W
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6391-403. PubMed ID: 26062532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.
    Martani F; Fossati T; Posteri R; Signori L; Porro D; Branduardi P
    Yeast; 2013 Sep; 30(9):365-78. PubMed ID: 23847041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae.
    Takabatake A; Kawazoe N; Izawa S
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2805-14. PubMed ID: 25503505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of SPT3].
    Zhao X; Jiang R; Li N; Yang Q; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):159-64. PubMed ID: 20432932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.
    Ismail KS; Sakamoto T; Hasunuma T; Zhao XQ; Kondo A
    Biotechnol J; 2014 Dec; 9(12):1519-25. PubMed ID: 24924214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of Transcription Factor ZNF1 of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of Saccharomyces cerevisiae.
    Songdech P; Ruchala J; Semkiv MV; Jensen LT; Sibirny A; Ratanakhanokchai K; Soontorngun N
    Biotechnol J; 2020 Jul; 15(7):e1900492. PubMed ID: 32196937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.