BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25698571)

  • 1. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.
    Santiago-Martínez MG; Lira-Silva E; Encalada R; Pineda E; Gallardo-Pérez JC; Zepeda-Rodriguez A; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R
    J Hazard Mater; 2015 May; 288():104-12. PubMed ID: 25698571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis.
    Avilés C; Loza-Tavera H; Terry N; Moreno-Sánchez R
    Arch Microbiol; 2003 Jul; 180(1):1-10. PubMed ID: 12739103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-course development of the Cd2+ hyper-accumulating phenotype in Euglena gracilis.
    Avilés C; Torres-Márquez ME; Mendoza-Cózatl D; Moreno-Sánchez R
    Arch Microbiol; 2005 Nov; 184(2):83-92. PubMed ID: 16177892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative profiling analysis of central metabolites in Euglena gracilis under various cultivation conditions.
    Matsuda F; Hayashi M; Kondo A
    Biosci Biotechnol Biochem; 2011; 75(11):2253-6. PubMed ID: 22056447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate uptake in photosynthetic Euglena gracilis. Mechanisms of regulation and contribution to cysteine homeostasis.
    García-García JD; Olin-Sandoval V; Saavedra E; Girard L; Hernández G; Moreno-Sánchez R
    Biochim Biophys Acta; 2012 Oct; 1820(10):1567-75. PubMed ID: 22609877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis.
    Rodríguez-Zavala JS; García-García JD; Ortiz-Cruz MA; Moreno-Sánchez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Aug; 42(10):1365-78. PubMed ID: 17680475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Cd2+, Zn2+, and Pb2+ uptake and accumulation by photosynthetic Euglena gracilis.
    Mendoza-Cózatl DG; Rangel-González E; Moreno-Sánchez R
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):521-8. PubMed ID: 17009132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis.
    Jasso-Chávez R; Pacheco-Rosales A; Lira-Silva E; Gallardo-Pérez JC; García N; Moreno-Sánchez R
    Aquat Toxicol; 2010 Nov; 100(4):329-38. PubMed ID: 20851473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological role of rhodoquinone in Euglena gracilis mitochondria.
    Castro-Guerrero NA; Jasso-Chávez R; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Dec; 1710(2-3):113-21. PubMed ID: 16325648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions].
    Mokrosnop VM; Polishchuk AV; Zolotareva EK
    Prikl Biokhim Mikrobiol; 2016; 52(2):230-6. PubMed ID: 27266253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis.
    Ogbonna JC; Ichige E; Tanaka H
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):532-8. PubMed ID: 11954802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium-induced synthesis of HSP70 and a role of glutathione in Euglena gracilis.
    Watanabe M; Suzuki T
    Redox Rep; 2004; 9(6):349-53. PubMed ID: 15720831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production.
    Rodríguez-Zavala JS; Ortiz-Cruz MA; Mendoza-Hernández G; Moreno-Sánchez R
    J Appl Microbiol; 2010 Dec; 109(6):2160-72. PubMed ID: 20854454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion.
    Grimm P; Risse JM; Cholewa D; Müller JM; Beshay U; Friehs K; Flaschel E
    J Biotechnol; 2015 Dec; 215():72-9. PubMed ID: 25910451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal, accumulation and resistance to chromium in heterotrophic Euglena gracilis.
    Lira-Silva E; Ramírez-Lima IS; Olín-Sandoval V; García-García JD; García-Contreras R; Moreno-Sánchez R; Jasso-Chávez R
    J Hazard Mater; 2011 Oct; 193():216-24. PubMed ID: 21831522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of wax ester fermentation in natural and bleached Euglena gracilis Strains in response to oxygen and the elongase inhibitor flufenacet.
    Tucci S; Vacula R; Krajcovic J; Proksch P; Martin W
    J Eukaryot Microbiol; 2010; 57(1):63-9. PubMed ID: 20015184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Euglena gracilis growth and cell composition under different temperature, light and trophic conditions.
    Wang Y; Seppänen-Laakso T; Rischer H; Wiebe MG
    PLoS One; 2018; 13(4):e0195329. PubMed ID: 29649233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium- and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy.
    Rocchetta I; Küpper H
    New Phytol; 2009; 182(2):405-420. PubMed ID: 19210715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium biosorption on Spirulina platensis biomass.
    Solisio C; Lodi A; Soletto D; Converti A
    Bioresour Technol; 2008 Sep; 99(13):5933-7. PubMed ID: 18082399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mitochondrion of Euglena gracilis.
    Zimorski V; Rauch C; van Hellemond JJ; Tielens AGM; Martin WF
    Adv Exp Med Biol; 2017; 979():19-37. PubMed ID: 28429315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.