BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25698785)

  • 1. Triple-peptide receptor targeting in vitro allows detection of all tested gut and bronchial NETs.
    Reubi JC; Waser B
    J Nucl Med; 2015 Apr; 56(4):613-5. PubMed ID: 25698785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-dependent insulinotropic polypeptide receptors in most gastroenteropancreatic and bronchial neuroendocrine tumors.
    Waser B; Rehmann R; Sanchez C; Fourmy D; Reubi JC
    J Clin Endocrinol Metab; 2012 Feb; 97(2):482-8. PubMed ID: 22112810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glucose-dependent insulinotropic polypeptide receptor: a novel target for neuroendocrine tumor imaging—first preclinical studies.
    Gourni E; Waser B; Clerc P; Fourmy D; Reubi JC; Maecke HR
    J Nucl Med; 2014 Jun; 55(6):976-82. PubMed ID: 24744444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting.
    Reubi JC; Waser B
    Eur J Nucl Med Mol Imaging; 2003 May; 30(5):781-93. PubMed ID: 12707737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does somatostatin or gastric inhibitory peptide receptor expression correlate with tumor grade and stage in gut neuroendocrine tumors?
    Körner M; Waser B; Reubi JC
    Neuroendocrinology; 2015; 101(1):45-57. PubMed ID: 25591947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy.
    Waser B; Beetschen K; Pellegata NS; Reubi JC
    Neuroendocrinology; 2011; 94(4):291-301. PubMed ID: 21893952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatostatin and other Peptide receptors as tools for tumor diagnosis and treatment.
    Reubi JC
    Neuroendocrinology; 2004; 80 Suppl 1():51-6. PubMed ID: 15477718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo detection of functional somatostatin receptors in canine insulinomas.
    Robben JH; Visser-Wisselaar HA; Rutteman GR; van Rijk PP; van Dongen AJ; Voorhout G; van den Ingh TS; Hofland LJ; Lamberts SW
    J Nucl Med; 1997 Jul; 38(7):1036-42. PubMed ID: 9225787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatostatin receptors 2 and 5 are the major somatostatin receptors in insulinomas: an in vivo and in vitro study.
    Bertherat J; Tenenbaum F; Perlemoine K; Videau C; Alberini JL; Richard B; Dousset B; Bertagna X; Epelbaum J
    J Clin Endocrinol Metab; 2003 Nov; 88(11):5353-60. PubMed ID: 14602773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-expressed peptide receptors in breast cancer as a molecular basis for in vivo multireceptor tumour targeting.
    Reubi C; Gugger M; Waser B
    Eur J Nucl Med Mol Imaging; 2002 Jul; 29(7):855-62. PubMed ID: 12111125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers.
    Reubi JC; Waser B; Mäcke H; Rivier J
    J Nucl Med; 2017 Feb; 58(2):300-306. PubMed ID: 27561878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel in vivo and in vitro detection of functional somatostatin receptors in human endocrine pancreatic tumors: consequences with regard to diagnosis, localization, and therapy.
    Lamberts SW; Hofland LJ; van Koetsveld PM; Reubi JC; Bruining HA; Bakker WH; Krenning EP
    J Clin Endocrinol Metab; 1990 Sep; 71(3):566-74. PubMed ID: 2168430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucagon-like peptide-1 improves insulin and proinsulin binding on RINm5F cells and human monocytes.
    Ebinger M; Jehle DR; Fussgaenger RD; Fehmann HC; Jehle PM
    Am J Physiol Endocrinol Metab; 2000 Jul; 279(1):E88-94. PubMed ID: 10893327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting.
    Wild D; Béhé M; Wicki A; Storch D; Waser B; Gotthardt M; Keil B; Christofori G; Reubi JC; Mäcke HR
    J Nucl Med; 2006 Dec; 47(12):2025-33. PubMed ID: 17138746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting.
    Körner M; Stöckli M; Waser B; Reubi JC
    J Nucl Med; 2007 May; 48(5):736-43. PubMed ID: 17475961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide receptor radionuclide therapy: focus on bronchial neuroendocrine tumors.
    Lo Russo G; Pusceddu S; Prinzi N; Imbimbo M; Proto C; Signorelli D; Vitali M; Ganzinelli M; Maccauro M; Buzzoni R; Seregni E; de Braud F; Garassino MC
    Tumour Biol; 2016 Oct; 37(10):12991-13003. PubMed ID: 27460087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Old and new peptide receptor targets in cancer: future directions.
    Reubi JC
    Recent Results Cancer Res; 2013; 194():567-76. PubMed ID: 22918784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theranostics in neuroendocrine tumors: an overview of current approaches and future challenges.
    Refardt J; Hofland J; Kwadwo A; Nicolas GP; Rottenburger C; Fani M; Wild D; Christ E
    Rev Endocr Metab Disord; 2021 Sep; 22(3):581-594. PubMed ID: 32495250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologous desensitization of the insulinotropic glucagon-like peptide-I (7-37) receptor on insulinoma (HIT-T15) cells.
    Fehmann HC; Habener JF
    Endocrinology; 1991 Jun; 128(6):2880-8. PubMed ID: 1645253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of peptide ligands for the human incretin receptors expressed in HEK-293 cells.
    Al-Sabah S; Al-Fulaij M; Ahmed HA
    Eur J Pharmacol; 2014 Oct; 741():311-5. PubMed ID: 25179575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.