These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25698925)

  • 1. The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations.
    Ueda A; Wu CF
    Front Cell Neurosci; 2015; 9():10. PubMed ID: 25698925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles of Drosophila cacophony and Dmca1D Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke Ca(2+) -activated BK channels in presynaptic excitability and postsynaptic response.
    Lee J; Ueda A; Wu CF
    Dev Neurobiol; 2014 Jan; 74(1):1-15. PubMed ID: 23959639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila.
    Lee J; Ueda A; Wu CF
    Neuroscience; 2008 Jul; 154(4):1283-96. PubMed ID: 18539401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant.
    Ueda A; Wu CF
    J Neurogenet; 2009; 23(1-2):185-99. PubMed ID: 19101836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.
    Ueda A; Wu CF
    J Neurogenet; 2012 Mar; 26(1):64-81. PubMed ID: 22380612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of quantal currents determines synaptic strength at neuromuscular synapses in larval Drosophila.
    Powers AS; Grizzaffi J; Ribchester R; Lnenicka GA
    Pflugers Arch; 2016 Nov; 468(11-12):2031-2040. PubMed ID: 27783155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subunit-specific and homeostatic regulation of glutamate receptor localization by CaMKII in Drosophila neuromuscular junctions.
    Morimoto T; Nobechi M; Komatsu A; Miyakawa H; Nose A
    Neuroscience; 2010 Feb; 165(4):1284-92. PubMed ID: 19961909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of single quantal efficacy at the snake neuromuscular junction.
    Wilkinson RS; Lunin SD; Stevermer JJ
    J Physiol; 1992 Mar; 448():413-36. PubMed ID: 1350638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade.
    Zhong Y; Budnik V; Wu CF
    J Neurosci; 1992 Feb; 12(2):644-51. PubMed ID: 1371316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization.
    Paradis S; Sweeney ST; Davis GW
    Neuron; 2001 Jun; 30(3):737-49. PubMed ID: 11430807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila.
    Davis GW; DiAntonio A; Petersen SA; Goodman CS
    Neuron; 1998 Feb; 20(2):305-15. PubMed ID: 9491991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae.
    Feng Y; Ueda A; Wu CF
    J Neurogenet; 2004; 18(2):377-402. PubMed ID: 15763995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Maintenance of Synaptic Homeostasis at the
    Yeates CJ; Zwiefelhofer DJ; Frank CA
    eNeuro; 2017; 4(6):. PubMed ID: 29255795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
    Qian SM; Delaney KR
    Brain Res; 1997 Oct; 771(2):259-70. PubMed ID: 9401746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromuscular junction.
    Barrett EF; Barrett JN; Botz D; Chang DB; Mahaffey D
    J Physiol; 1978 Jun; 279():253-73. PubMed ID: 209175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system.
    Cheung US; Shayan AJ; Boulianne GL; Atwood HL
    J Neurobiol; 1999 Jul; 40(1):1-13. PubMed ID: 10398067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila.
    Zhong Y; Wu CF
    J Neurosci; 2004 Feb; 24(6):1439-45. PubMed ID: 14960616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic ultrastructure in nerve terminals of Drosophila larvae overexpressing the learning gene dunce.
    Shayan AJ; Atwood HL
    J Neurobiol; 2000 Apr; 43(1):89-97. PubMed ID: 10756069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantal transmission at Mauthner axon target synapses in the goldfish brainstem.
    Hackett JT; Cochran SL; Greenfield LJ
    Neuroscience; 1989; 32(1):49-64. PubMed ID: 2555736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular transmission and correlative morphology in young and old mice.
    Banker BQ; Kelly SS; Robbins N
    J Physiol; 1983 Jun; 339():355-77. PubMed ID: 6310088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.