These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25698963)

  • 1. Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study.
    Takiyama K
    Front Comput Neurosci; 2015; 9():4. PubMed ID: 25698963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning with slight forgetting optimizes sensorimotor transformation in redundant motor systems.
    Hirashima M; Nozaki D
    PLoS Comput Biol; 2012; 8(6):e1002590. PubMed ID: 22761568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A balanced motor primitive framework can simultaneously explain motor learning in unimanual and bimanual movements.
    Takiyama K; Sakai Y
    Neural Netw; 2017 Feb; 86():80-89. PubMed ID: 27889240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online Visual Feedback during Error-Free Channel Trials Leads to Active Unlearning of Movement Dynamics: Evidence for Adaptation to Trajectory Prediction Errors.
    Lago-Rodriguez A; Miall RC
    Front Hum Neurosci; 2016; 10():472. PubMed ID: 27721748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-dependent decay of motor memories during skill acquisition.
    Ingram JN; Flanagan JR; Wolpert DM
    Curr Biol; 2013 Jun; 23(12):1107-12. PubMed ID: 23727092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning.
    Hosseini EA; Nguyen KP; Joiner WM
    PLoS Comput Biol; 2017 May; 13(5):e1005492. PubMed ID: 28481891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements.
    Takiyama K; Sakai Y
    Sci Rep; 2016 Mar; 6():23331. PubMed ID: 27025168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memory decay and generalization following distinct motor learning mechanisms.
    Bao S; Lei Y
    J Neurophysiol; 2022 Dec; 128(6):1534-1545. PubMed ID: 36321731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Decay of Motor Memories Is Independent of Context Change Detection.
    Brennan AE; Smith MA
    PLoS Comput Biol; 2015 Jun; 11(6):e1004278. PubMed ID: 26111244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor memory and local minimization of error and effort, not global optimization, determine motor behavior.
    Ganesh G; Haruno M; Kawato M; Burdet E
    J Neurophysiol; 2010 Jul; 104(1):382-90. PubMed ID: 20484533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decay of motor memories in the absence of error.
    Vaswani PA; Shadmehr R
    J Neurosci; 2013 May; 33(18):7700-9. PubMed ID: 23637163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor adaptation as a greedy optimization of error and effort.
    Emken JL; Benitez R; Sideris A; Bobrow JE; Reinkensmeyer DJ
    J Neurophysiol; 2007 Jun; 97(6):3997-4006. PubMed ID: 17392418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of motor memory during the seconds after observation of motor error.
    Huang VS; Shadmehr R
    J Neurophysiol; 2007 Jun; 97(6):3976-85. PubMed ID: 17428900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements.
    Grossberg S; Paine RW
    Neural Netw; 2000; 13(8-9):999-1046. PubMed ID: 11156206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying interlimb transfer of visuomotor rotations.
    Wang J; Sainburg RL
    Exp Brain Res; 2003 Apr; 149(4):520-6. PubMed ID: 12677333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning from the other limb's experience: sharing the 'trained' M1 representation of the motor sequence knowledge.
    Gabitov E; Manor D; Karni A
    J Physiol; 2016 Jan; 594(1):169-88. PubMed ID: 26442464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonvisual motor learning improves visual motion perception: evidence from violating the two-thirds power law.
    Beets IA; Rösler F; Fiehler K
    J Neurophysiol; 2010 Sep; 104(3):1612-24. PubMed ID: 20610788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.