These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

939 related articles for article (PubMed ID: 25699255)

  • 41. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury.
    Kramer AS; Harvey AR; Plant GW; Hodgetts SI
    Cell Transplant; 2013; 22(4):571-617. PubMed ID: 22944020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases.
    Shi L; Cui Y; Luan J; Zhou X; Han J
    Intractable Rare Dis Res; 2016 Aug; 5(3):192-201. PubMed ID: 27672542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. iPSCs, aging and age-related diseases.
    Isobe K; Cheng Z; Nishio N; Suganya T; Tanaka Y; Ito S
    N Biotechnol; 2014 Sep; 31(5):411-21. PubMed ID: 24784583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging opportunities for induced pluripotent stem cells in orthopaedics.
    Li WJ; Jiao H; Walczak BE
    J Orthop Translat; 2019 Apr; 17():73-81. PubMed ID: 31194067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patient-derived induced pluripotent stem cells for models of cancer and cancer stem cell research.
    Chao HM; Chern E
    J Formos Med Assoc; 2018 Dec; 117(12):1046-1057. PubMed ID: 30172452
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine.
    Sayed N; Liu C; Wu JC
    J Am Coll Cardiol; 2016 May; 67(18):2161-2176. PubMed ID: 27151349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances in microRNA-mediated reprogramming technology.
    Kuo CH; Ying SY
    Stem Cells Int; 2012; 2012():823709. PubMed ID: 22550519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pluripotent stem cell derivation and differentiation toward cardiac muscle: novel techniques and advances in patent literature.
    Quattrocelli M; Thorrez L; Sampaolesi M
    Recent Pat Drug Deliv Formul; 2013 Apr; 7(1):18-28. PubMed ID: 22974171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency.
    Leng L; Tan Y; Gong F; Hu L; Ouyang Q; Zhao Y; Lu G; Lin G
    Hum Reprod; 2015 Mar; 30(3):737-48. PubMed ID: 25586786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: iN vs. iPSCs Models.
    Zhang Y; Xie X; Hu J; Afreen KS; Zhang CL; Zhuge Q; Yang J
    Front Neurosci; 2020; 14():546484. PubMed ID: 33328842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gingival Fibroblasts as Autologous Feeders for Induced Pluripotent Stem Cells.
    Yu G; Okawa H; Okita K; Kamano Y; Wang F; Saeki M; Yatani H; Egusa H
    J Dent Res; 2016 Jan; 95(1):110-8. PubMed ID: 26467419
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system.
    Drozd AM; Walczak MP; Piaskowski S; Stoczynska-Fidelus E; Rieske P; Grzela DP
    Stem Cell Res Ther; 2015 Jun; 6(1):122. PubMed ID: 26088261
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neutrophil generation from hematopoietic progenitor cells and induced pluripotent stem cells (iPSCs): potential applications.
    Jafarzadeh A; Motaghi M; Patra SK; Jafarzadeh Z; Nemati M; Saha B
    Cytotherapy; 2024 Aug; 26(8):797-805. PubMed ID: 38625068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy.
    Jiang Z; Han Y; Cao X
    Cell Mol Immunol; 2014 Jan; 11(1):17-24. PubMed ID: 24336163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine.
    Shtrichman R; Germanguz I; Itskovitz-Eldor J
    Curr Mol Med; 2013 Jun; 13(5):792-805. PubMed ID: 23642060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells.
    Hsu YC; Wu YT; Tsai CL; Wei YH
    Exp Biol Med (Maywood); 2018 Mar; 243(6):563-575. PubMed ID: 29557214
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells.
    Deshmukh RS; Kovács KA; Dinnyés A
    Stem Cells Int; 2012; 2012():379569. PubMed ID: 22654918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances.
    Park J; Kim J; Shin B; Schöler HR; Kim J; Kim KP
    Int J Stem Cells; 2024 Jan; ():. PubMed ID: 38281813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Induced pluripotent stem cells and personalized medicine: current progress and future perspectives.
    Chun YS; Byun K; Lee B
    Anat Cell Biol; 2011 Dec; 44(4):245-55. PubMed ID: 22254153
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induced pluripotent stem cells: progress and future perspectives in the stem cell world.
    Rezanejad H; Matin MM
    Cell Reprogram; 2012 Dec; 14(6):459-70. PubMed ID: 23035654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.