BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2569929)

  • 61. Does 2-chlorodeoxyadenosine contribute to alteration of DNA methyltransferase activity?
    Wyczechowska D; Fabianowska-Majewska K
    Adv Exp Med Biol; 1998; 431():595-8. PubMed ID: 9598135
    [No Abstract]   [Full Text] [Related]  

  • 62. Modification of the repair of potentially lethal damage in plateau-phase Chinese hamster cells by 2-chlorodeoxyadenosine.
    Tanabe K; Hiraoka W; Kuwabara M; Matsuda A; Ueda T; Sato F
    J Radiat Res; 1988 Sep; 29(3):172-81. PubMed ID: 2905006
    [No Abstract]   [Full Text] [Related]  

  • 63. Cell cycle independent lymphocytotoxicity of 2-chlorodeoxyadenosine.
    Carson DA; Wasson DB; Yu A
    Adv Exp Med Biol; 1984; 165 Pt B():351-6. PubMed ID: 6144251
    [No Abstract]   [Full Text] [Related]  

  • 64. The effect of chemotherapy on the kinetics and proliferative capacity of normal and tumorous tissues in vivo.
    Rosenoff SH; Bull JM; Young RC
    Blood; 1975 Jan; 45(1):107-18. PubMed ID: 803102
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of cytostatic sensitivities of L 1210 cells and human stimulated lymphocytes in three cell proliferation assays.
    Ali-Osman F; Maurer HR
    J Cancer Res Clin Oncol; 1980; 98(3):221-31. PubMed ID: 6453124
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthesis and cytotoxicity of deoxyadenosine analogues: isomer distribution in the sodium salt glycosylation of 2,6-disubstituted purines.
    Kazimierczuk Z; Vilpo J; Hildebrand C; Wright G
    J Med Chem; 1990 Jun; 33(6):1683-7. PubMed ID: 2342062
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient syntheses of 2-chloro-2'-deoxyadenosine (cladribine) from 2'-deoxyguanosine(1).
    Janeba Z; Francom P; Robins MJ
    J Org Chem; 2003 Feb; 68(3):989-92. PubMed ID: 12558425
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effects of human kallikrein and aprotinin on nonmalignant and malignant cell growth.
    Korbelik M; Skrk J; Poljak-Blazi M; Suhar A; Boranić M
    Adv Exp Med Biol; 1989; 247B():675-80. PubMed ID: 2481955
    [No Abstract]   [Full Text] [Related]  

  • 69. The mechanism of 2-chlorodeoxyadenosine-induced cell death.
    Wataya Y; Hirota Y; Hiramoto-Yoshioka A; Tanaka S; Otani T; Minowada J; Matsuda A; Ueda T
    Adv Exp Med Biol; 1989; 253B():227-34. PubMed ID: 2575349
    [No Abstract]   [Full Text] [Related]  

  • 70. Combination treatment based on metabolic effects of dinaline.
    Schaider H; Haberkorn U; Petru E; Berger MR
    J Cancer Res Clin Oncol; 1995; 121(4):203-10. PubMed ID: 7751318
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The rate of catabolism of dATP to deoxyadenosine during the growth of different cell lines in vitro.
    Marcussen M; Klenow H
    FEBS Lett; 1992 Mar; 299(2):143-5. PubMed ID: 1544486
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cytotoxicity of 2-chlorodeoxyadenosine in a human tumor colony-forming assay.
    Hutton JJ; Von Hoff DD
    Cancer Drug Deliv; 1986; 3(2):115-22. PubMed ID: 2871921
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analogs of 2'-deoxyadenosine: facile enzymatic preparation and growth inhibitory effects on human cell lines.
    Huang MC; Hatfield K; Roetker AW; Montgomery JA; Blakley RL
    Biochem Pharmacol; 1981 Oct; 30(19):2663-71. PubMed ID: 6975103
    [No Abstract]   [Full Text] [Related]  

  • 74. Action and sequence dependent interaction of acivicin and 6-thioguanine in human derived malignant T-ALL and CALLA+ cell lines.
    Trueworthy RC; DeAbreu RA; Lambooy LH; Bökkerink JP; Stet EH
    Adv Exp Med Biol; 1991; 309A():25-8. PubMed ID: 1789219
    [No Abstract]   [Full Text] [Related]  

  • 75. A methodology for finding optimal dosage levels in multi-drug treatment interactions.
    Barbosa M de Matos
    Comput Methods Programs Biomed; 1994 Jun; 43(3-4):239-45. PubMed ID: 7956165
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolism of 5' deoxy-5'[35S]-isobutyl-thio-adenosine (SIBA) in rats and mice.
    Lawrence F; Chermann JC; Robert-Gero M
    Biochem Pharmacol; 1980 Jul; 29(13):1963-5. PubMed ID: 6967320
    [No Abstract]   [Full Text] [Related]  

  • 77. Structure-guided design of anti-cancer ribonucleotide reductase inhibitors.
    Misko TA; Liu YT; Harris ME; Oleinick NL; Pink J; Lee HY; Dealwis CG
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):438-450. PubMed ID: 30734609
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators.
    Ahmad MF; Huff SE; Pink J; Alam I; Zhang A; Perry K; Harris ME; Misko T; Porwal SK; Oleinick NL; Miyagi M; Viswanathan R; Dealwis CG
    J Med Chem; 2015 Dec; 58(24):9498-509. PubMed ID: 26488902
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The structural basis for the allosteric regulation of ribonucleotide reductase.
    Ahmad MF; Dealwis CG
    Prog Mol Biol Transl Sci; 2013; 117():389-410. PubMed ID: 23663976
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Targeting the Large Subunit of Human Ribonucleotide Reductase for Cancer Chemotherapy.
    Wijerathna SR; Ahmad MF; Xu H; Fairman JW; Zhang A; Kaushal PS; Wan Q; Kiser J; Dealwis CG
    Pharmaceuticals (Basel); 2011 Oct; 4(10):1328-1354. PubMed ID: 23115527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.