These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25699452)
1. Critical length limiting superlow friction. Ma M; Benassi A; Vanossi A; Urbakh M Phys Rev Lett; 2015 Feb; 114(5):055501. PubMed ID: 25699452 [TBL] [Abstract][Full Text] [Related]
2. The breakdown of superlubricity by driving-induced commensurate dislocations. Benassi A; Ma M; Urbakh M; Vanossi A Sci Rep; 2015 Nov; 5():16134. PubMed ID: 26553308 [TBL] [Abstract][Full Text] [Related]
3. Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers. Li J; Luo J Langmuir; 2017 Nov; 33(44):12596-12601. PubMed ID: 29037037 [TBL] [Abstract][Full Text] [Related]
4. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles. Li J; Zhang C; Cheng P; Chen X; Wang W; Luo J Langmuir; 2016 Jun; 32(22):5593-9. PubMed ID: 27192019 [TBL] [Abstract][Full Text] [Related]
5. The effect of temperature and velocity on superlubricity. van den Ende JA; de Wijn AS; Fasolino A J Phys Condens Matter; 2012 Nov; 24(44):445009. PubMed ID: 23037889 [TBL] [Abstract][Full Text] [Related]
6. Generalized Scaling Law of Structural Superlubricity. Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868 [TBL] [Abstract][Full Text] [Related]
7. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Zhang R; Ning Z; Zhang Y; Zheng Q; Chen Q; Xie H; Zhang Q; Qian W; Wei F Nat Nanotechnol; 2013 Dec; 8(12):912-6. PubMed ID: 24185944 [TBL] [Abstract][Full Text] [Related]
8. Effect of strain engineering on superlubricity in a double-walled carbon nanotube. Li J; Peng Y; Tang X; Xu Q; Bai L Phys Chem Chem Phys; 2021 Mar; 23(8):4988-5000. PubMed ID: 33621296 [TBL] [Abstract][Full Text] [Related]
9. Vanishing stick-slip friction in few-layer graphenes: the thickness effect. Xu L; Ma TB; Hu YZ; Wang H Nanotechnology; 2011 Jul; 22(28):285708. PubMed ID: 21646695 [TBL] [Abstract][Full Text] [Related]
10. Macroscale Robust Superlubricity on Metallic NbB Wang J; Liu C; Miao K; Zhang K; Zheng W; Chen C Adv Sci (Weinh); 2022 May; 9(13):e2103815. PubMed ID: 35266647 [TBL] [Abstract][Full Text] [Related]
11. Structural Superlubricity Based on Crystalline Materials. Song Y; Qu C; Ma M; Zheng Q Small; 2020 Apr; 16(15):e1903018. PubMed ID: 31670482 [TBL] [Abstract][Full Text] [Related]
12. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Li J; Zhang C; Luo J Langmuir; 2011 Aug; 27(15):9413-7. PubMed ID: 21682338 [TBL] [Abstract][Full Text] [Related]
13. Puckering stick-slip friction induced by a sliding nanoscale contact. Rastei MV; Heinrich B; Gallani JL Phys Rev Lett; 2013 Aug; 111(8):084301. PubMed ID: 24010441 [TBL] [Abstract][Full Text] [Related]
14. Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate. Vanossi A; Röder J; Bishop AR; Bortolani V Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):017203. PubMed ID: 11304394 [TBL] [Abstract][Full Text] [Related]
15. Insights into Superlow Friction and Instability of Hydrogenated Amorphous Carbon/Fluid Nanocomposite Interface. Li X; Xu X; Qi J; Zhang D; Wang A; Lee KR ACS Appl Mater Interfaces; 2021 Jul; 13(29):35173-35186. PubMed ID: 34275273 [TBL] [Abstract][Full Text] [Related]
16. Atomistic simulations of the load dependant friction force between silicon tip and diamond substrate. Bu H; Chen Y J Nanosci Nanotechnol; 2010 Nov; 10(11):7501-5. PubMed ID: 21137969 [TBL] [Abstract][Full Text] [Related]
17. Effect of Wear-Induced Surface Deformation on Stick-Slip Friction of Galvanized Automotive Steels. Gao H; Zhao L; Li L; Wu S; Lin Z; Wang Q Langmuir; 2022 Sep; 38(37):11459-11467. PubMed ID: 36087276 [TBL] [Abstract][Full Text] [Related]
18. Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Socoliuc A; Bennewitz R; Gnecco E; Meyer E Phys Rev Lett; 2004 Apr; 92(13):134301. PubMed ID: 15089616 [TBL] [Abstract][Full Text] [Related]
19. Friction fluctuations of gold nanoparticles in the superlubric regime. Dietzel D; Wijn AS; Vorholzer M; Schirmeisen A Nanotechnology; 2018 Apr; 29(15):155702. PubMed ID: 29460852 [TBL] [Abstract][Full Text] [Related]
20. Poly(vinylphosphonic acid) (PVPA) on titanium alloy acting as effective cartilage-like superlubricity coatings. Zhang C; Liu Y; Wen S; Wang S ACS Appl Mater Interfaces; 2014 Oct; 6(20):17571-8. PubMed ID: 25244595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]