These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 25699631)
1. A common late-stage intermediate in catalysis by 2-hydroxyethyl-phosphonate dioxygenase and methylphosphonate synthase. Peck SC; Chekan JR; Ulrich EC; Nair SK; van der Donk WA J Am Chem Soc; 2015 Mar; 137(9):3217-20. PubMed ID: 25699631 [TBL] [Abstract][Full Text] [Related]
2. O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. Peck SC; Wang C; Dassama LM; Zhang B; Guo Y; Rajakovich LJ; Bollinger JM; Krebs C; van der Donk WA J Am Chem Soc; 2017 Feb; 139(5):2045-2052. PubMed ID: 28092705 [TBL] [Abstract][Full Text] [Related]
3. Mechanism and substrate recognition of 2-hydroxyethylphosphonate dioxygenase. Peck SC; Cooke HA; Cicchillo RM; Malova P; Hammerschmidt F; Nair SK; van der Donk WA Biochemistry; 2011 Aug; 50(30):6598-605. PubMed ID: 21711001 [TBL] [Abstract][Full Text] [Related]
4. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Mendel S; Arndt A; Bugg TD Biochemistry; 2004 Oct; 43(42):13390-6. PubMed ID: 15491145 [TBL] [Abstract][Full Text] [Related]
5. Water-dependent reaction pathways: an essential factor for the catalysis in HEPD enzyme. Du L; Gao J; Liu Y; Liu C J Phys Chem B; 2012 Oct; 116(39):11837-44. PubMed ID: 22950439 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for methylphosphonate biosynthesis. Born DA; Ulrich EC; Ju KS; Peck SC; van der Donk WA; Drennan CL Science; 2017 Dec; 358(6368):1336-1339. PubMed ID: 29217579 [TBL] [Abstract][Full Text] [Related]
7. How To Produce Methane Precursor in the Upper Ocean by An Untypical Non-Heme Fe-Dependent Methylphosphonate Synthase? Yan JF; Chen SL Chemphyschem; 2020 Mar; 21(5):385-396. PubMed ID: 31926045 [TBL] [Abstract][Full Text] [Related]
8. Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species. Zhu H; Peck SC; Bonnot F; van der Donk WA; Klinman JP J Am Chem Soc; 2015 Aug; 137(33):10448-51. PubMed ID: 26267117 [TBL] [Abstract][Full Text] [Related]
9. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Kovaleva EG; Neibergall MB; Chakrabarty S; Lipscomb JD Acc Chem Res; 2007 Jul; 40(7):475-83. PubMed ID: 17567087 [TBL] [Abstract][Full Text] [Related]
10. Fenton-Derived OH Radicals Enable the MPnS Enzyme to Convert 2-Hydroxyethylphosphonate to Methylphosphonate: Insights from Ab Initio QM/MM MD Simulations. Wang B; Cao Z; Rovira C; Song J; Shaik S J Am Chem Soc; 2019 Jun; 141(23):9284-9291. PubMed ID: 31132257 [TBL] [Abstract][Full Text] [Related]
11. Hydroperoxylation by hydroxyethylphosphonate dioxygenase. Whitteck JT; Cicchillo RM; van der Donk WA J Am Chem Soc; 2009 Nov; 131(44):16225-32. PubMed ID: 19839620 [TBL] [Abstract][Full Text] [Related]
12. Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates. Groce SL; Lipscomb JD Biochemistry; 2005 May; 44(19):7175-88. PubMed ID: 15882056 [TBL] [Abstract][Full Text] [Related]
13. Lactone synthesis activity in a site-directed mutant of an extradiol catechol dioxygenase enzyme. Mendel S; Arndt A; Bugg TD Chem Commun (Camb); 2005 Feb; (5):666-8. PubMed ID: 15672171 [TBL] [Abstract][Full Text] [Related]
14. Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase. Nojiri H; Ashikawa Y; Noguchi H; Nam JW; Urata M; Fujimoto Z; Uchimura H; Terada T; Nakamura S; Shimizu K; Yoshida T; Habe H; Omori T J Mol Biol; 2005 Aug; 351(2):355-70. PubMed ID: 16005887 [TBL] [Abstract][Full Text] [Related]
15. Ferric superoxide and ferric hydroxide are used in the catalytic mechanism of hydroxyethylphosphonate dioxygenase: a density functional theory investigation. Hirao H; Morokuma K J Am Chem Soc; 2010 Dec; 132(50):17901-9. PubMed ID: 21121666 [TBL] [Abstract][Full Text] [Related]
16. Adapting to oxygen: 3-Hydroxyanthrinilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities. Yang Y; Liu F; Liu A J Biol Chem; 2018 Jul; 293(27):10415-10424. PubMed ID: 29784877 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates. van Staalduinen LM; McSorley FR; Schiessl K; Séguin J; Wyatt PB; Hammerschmidt F; Zechel DL; Jia Z Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5171-6. PubMed ID: 24706911 [TBL] [Abstract][Full Text] [Related]
18. Evidence for distinct rate-limiting steps in the cleavage of alkenes by carotenoid cleavage dioxygenases. Khadka N; Farquhar ER; Hill HE; Shi W; von Lintig J; Kiser PD J Biol Chem; 2019 Jul; 294(27):10596-10606. PubMed ID: 31138651 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. Cho JH; Jung DK; Lee K; Rhee S J Biol Chem; 2009 Dec; 284(49):34321-30. PubMed ID: 19828456 [TBL] [Abstract][Full Text] [Related]
20. Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase. Ashikawa Y; Fujimoto Z; Usami Y; Inoue K; Noguchi H; Yamane H; Nojiri H BMC Struct Biol; 2012 Jun; 12():15. PubMed ID: 22727022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]