BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25699645)

  • 1. Investigation of the photochemical changes of chlorogenic acids induced by ultraviolet light in model systems and in agricultural practice with Stevia rebaudiana cultivation as an example.
    Karaköse H; Jaiswal R; Deshpande S; Kuhnert N
    J Agric Food Chem; 2015 Apr; 63(13):3338-47. PubMed ID: 25699645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of chlorogenic acid and its derivatives in hairy root cultures of Stevia rebaudiana.
    Fu X; Yin ZP; Chen JG; Shangguan XC; Wang X; Zhang QF; Peng DY
    J Agric Food Chem; 2015 Jan; 63(1):262-8. PubMed ID: 25548875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and quantification of hydroxycinnamate derivatives in Stevia rebaudiana leaves by LC-MSn.
    Karaköse H; Jaiswal R; Kuhnert N
    J Agric Food Chem; 2011 Sep; 59(18):10143-50. PubMed ID: 21806067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling and Quantification of Phenolics in Stevia rebaudiana Leaves.
    Karaköse H; Müller A; Kuhnert N
    J Agric Food Chem; 2015 Oct; 63(41):9188-98. PubMed ID: 26333998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into phenol and polyphenol composition of Stevia rebaudiana leaves.
    Pacifico S; Piccolella S; Nocera P; Tranquillo E; Dal Poggetto F; Catauro M
    J Pharm Biomed Anal; 2019 Jan; 163():45-57. PubMed ID: 30286435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review.
    Wölwer-Rieck U
    J Agric Food Chem; 2012 Feb; 60(4):886-95. PubMed ID: 22250765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorogenic acid UVA–UVB photostability.
    Rivelli DP; Filho CA; Almeida RL; Ropke CD; Sawada TC; Barros SB
    Photochem Photobiol; 2010; 86(5):1005-7. PubMed ID: 20663081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni.
    Li J; Jiang H; Shi R
    Nat Prod Res; 2009; 23(15):1378-83. PubMed ID: 19809909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).
    Ahmad N; Rab A; Ahmad N
    J Photochem Photobiol B; 2016 Jan; 154():51-6. PubMed ID: 26688290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry.
    Gardana C; Scaglianti M; Simonetti P
    J Chromatogr A; 2010 Feb; 1217(9):1463-70. PubMed ID: 20102764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.
    Zhang J; Bell LN
    J Food Sci; 2017 Apr; 82(4):897-903. PubMed ID: 28218969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leaves by LC-MS(n).
    Jaiswal R; Deshpande S; Kuhnert N
    Phytochem Anal; 2011; 22(5):432-41. PubMed ID: 21495103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Features of development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides.
    Bondarev N; Reshetnyak O; Nosov A
    Planta Med; 2002 Aug; 68(8):759-62. PubMed ID: 12221607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni.
    Zeng J; Chen A; Li D; Yi B; Wu W
    J Agric Food Chem; 2013 Jun; 61(24):5720-6. PubMed ID: 23711229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the chemical changes of chlorogenic acids during coffee brewing: conjugate addition of water to the olefinic moiety of chlorogenic acids and their quinides.
    Matei MF; Jaiswal R; Kuhnert N
    J Agric Food Chem; 2012 Dec; 60(49):12105-15. PubMed ID: 23106198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal variation of the diterpene steviol in Stevia rebaudiana grown under different photoperiods.
    Ceunen S; Geuns JM
    Phytochemistry; 2013 May; 89():32-8. PubMed ID: 23402803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling the chlorogenic acids of aster by HPLC-MS(n).
    Clifford MN; Zheng W; Kuhnert N
    Phytochem Anal; 2006; 17(6):384-93. PubMed ID: 17144245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the modified Gompertz equation to assess the Stevia rebaudiana Bertoni antilisterial kinetics.
    Belda-Galbis CM; Pina-Pérez MC; Espinosa J; Marco-Celdrán A; Martínez A; Rodrigo D
    Food Microbiol; 2014 Apr; 38():56-61. PubMed ID: 24290626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct analysis of steviol glycosides from Stevia leaves by ambient ionization mass spectrometry performed on whole leaves.
    Zhang JI; Li X; Ouyang Z; Cooks RG
    Analyst; 2012 Jul; 137(13):3091-8. PubMed ID: 22606683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry.
    Jackson AU; Tata A; Wu C; Perry RH; Haas G; West L; Cooks RG
    Analyst; 2009 May; 134(5):867-74. PubMed ID: 19381377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.