BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25700124)

  • 1. A half-reaction alternative to water oxidation: chloride oxidation to chlorine catalyzed by silver ion.
    Du J; Chen Z; Chen C; Meyer TJ
    J Am Chem Soc; 2015 Mar; 137(9):3193-6. PubMed ID: 25700124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.
    Levanov AV; Isaykina OY; Amirova NK; Antipenko EE; Lunin VV
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16554-69. PubMed ID: 26077317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow AgI:Ag nanoframes as solar photocatalysts for hydrogen generation from water reduction.
    An C; Wang J; Liu J; Wang S; Sun Y
    ChemSusChem; 2013 Oct; 6(10):1931-7. PubMed ID: 24105996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aniline chlorination by in situ formed Ag-Cl complexes under simulated solar light irradiation.
    Hu X; Wang X; Dong L; Chang F; Luo Y
    Water Sci Technol; 2015; 71(11):1679-85. PubMed ID: 26038933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio molecular dynamics study of the solvated OHCl- complex: implications for the atmospheric oxidation of chloride anion to molecular chlorine.
    D'Auria R; Kuo IF; Tobias DJ
    J Phys Chem A; 2008 May; 112(20):4644-50. PubMed ID: 18444631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride-assisted catalytic water oxidation.
    Chen Z; Concepcion JJ; Song N; Meyer TJ
    Chem Commun (Camb); 2014 Jul; 50(59):8053-6. PubMed ID: 24924315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the formation of reactive chlorine species on oxidation process using persulfate and nano zero-valent iron.
    Kim C; Thao TT; Kim JH; Hwang I
    Chemosphere; 2020 Jul; 250():126266. PubMed ID: 32114343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the speciation of aqueous free chlorine from pH 1 to 12 with Raman spectroscopy to determine the identity of the potent low-pH oxidant.
    Cherney DP; Duirk SE; Tarr JC; Collette TW
    Appl Spectrosc; 2006 Jul; 60(7):764-72. PubMed ID: 16854264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic study of silver-catalyzed decarboxylative fluorination.
    Patel NR; Flowers RA
    J Org Chem; 2015 Jun; 80(11):5834-41. PubMed ID: 25927595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts.
    Zhu M; Chen P; Ma W; Lei B; Liu M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6386-92. PubMed ID: 23138343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxyhalogen-sulfur chemistry: kinetics and mechanism of oxidation of N-acetylthiourea by chlorite and chlorine dioxide.
    Olagunju O; Siegel PD; Olojo R; Simoyi RH
    J Phys Chem A; 2006 Feb; 110(7):2396-410. PubMed ID: 16480299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-valence metal oxide nanoparticles as electrochemical half-cells: substituting the Ag/AgCl of reference electrodes by CeO(2-x) nanoparticles.
    Nagarale RK; Hoss U; Heller A
    J Am Chem Soc; 2012 Dec; 134(51):20783-7. PubMed ID: 23171288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine.
    Sivey JD; Arey JS; Tentscher PR; Roberts AL
    Environ Sci Technol; 2013 Feb; 47(3):1330-8. PubMed ID: 23323704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis.
    Blakemore JD; Schley ND; Balcells D; Hull JF; Olack GW; Incarvito CD; Eisenstein O; Brudvig GW; Crabtree RH
    J Am Chem Soc; 2010 Nov; 132(45):16017-29. PubMed ID: 20964386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple.
    Gendel Y; Levi N; Lahav O
    Environ Sci Technol; 2009 Nov; 43(21):8315-9. PubMed ID: 19924962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.
    Levard C; Mitra S; Yang T; Jew AD; Badireddy AR; Lowry GV; Brown GE
    Environ Sci Technol; 2013 Jun; 47(11):5738-45. PubMed ID: 23641814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of water in the chlorine evolution reaction at RuO(2)-based electrodes--understanding electrocatalysis as a resonance phenomenon.
    Zeradjanin AR; Menzel N; Strasser P; Schuhmann W
    ChemSusChem; 2012 Oct; 5(10):1897-904. PubMed ID: 22893626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate.
    Lutze HV; Kerlin N; Schmidt TC
    Water Res; 2015 Apr; 72():349-60. PubMed ID: 25455043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling.
    Ma T; Garg S; Miller CJ; Waite TD
    J Colloid Interface Sci; 2015 May; 446():366-72. PubMed ID: 25541200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl.
    Scialdone O; Randazzo S; Galia A; Silvestri G
    Water Res; 2009 May; 43(8):2260-72. PubMed ID: 19269668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.