These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25700124)

  • 61. The combined removal of methyl mercaptan and hydrogen sulfide via an electro-reactor process using a low concentration of continuously regenerable Ag(II) active catalyst.
    Muthuraman G; Chung SJ; Moon IS
    J Hazard Mater; 2011 Oct; 193():257-63. PubMed ID: 21840123
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes.
    Bagastyo AY; Batstone DJ; Rabaey K; Radjenovic J
    Water Res; 2013 Jan; 47(1):242-50. PubMed ID: 23137830
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Peroxidase-catalyzed halide ion oxidation.
    Dunford HB
    Redox Rep; 2000; 5(4):169-71. PubMed ID: 10994869
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Catalytic four-electron oxidation of water by intramolecular coupling of the oxo ligands of a bis(ruthenium-bipyridine) complex.
    Wada T; Ohtsu H; Tanaka K
    Chemistry; 2012 Feb; 18(8):2374-81. PubMed ID: 22249993
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Iridium dihydroxybipyridine complexes show that ligand deprotonation dramatically speeds rates of catalytic water oxidation.
    DePasquale J; Nieto I; Reuther LE; Herbst-Gervasoni CJ; Paul JJ; Mochalin V; Zeller M; Thomas CM; Addison AW; Papish ET
    Inorg Chem; 2013 Aug; 52(16):9175-83. PubMed ID: 23387353
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Organic matter chlorination rates in different boreal soils: the role of soil organic matter content.
    Gustavsson M; Karlsson S; Oberg G; Sandén P; Svensson T; Valinia S; Thiry Y; Bastviken D
    Environ Sci Technol; 2012 Feb; 46(3):1504-10. PubMed ID: 22191661
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development of industrial catalysts for sustainable chlorine production.
    Mondelli C; Amrute AP; Moser M; Schmidt T; Pérez-Ramírez J
    Chimia (Aarau); 2012; 66(9):694-8. PubMed ID: 23211728
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos.
    Groh KJ; Dalkvist T; Piccapietra F; Behra R; Suter MJ; Schirmer K
    Nanotoxicology; 2015 Feb; 9(1):81-91. PubMed ID: 24625062
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes.
    Meyer TJ; Huynh MH
    Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Application of gold catalyst for mercury oxidation by chlorine.
    Zhao Y; Mann MD; Pavlish JH; Mibeck BA; Dunham GE; Olson ES
    Environ Sci Technol; 2006 Mar; 40(5):1603-8. PubMed ID: 16568776
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An anti-biofilm material: polysaccharides prevent the precipitation reaction of silver ions and chloride ions and lead to the synthesis of nano silver chloride.
    Li K; Liu Z; Liu X; Wang L; Zhao J; Zhang X; Kong Y; Chen M
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33836506
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production.
    Gen M; Zhang R; Li Y; Chan CK
    Environ Sci Technol; 2020 Aug; 54(16):9862-9871. PubMed ID: 32668147
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Investigation of the kinetics and mechanisms of the oxidation of cerussite and hydrocerussite by chlorine.
    Liu H; Korshin GV; Ferguson JF
    Environ Sci Technol; 2008 May; 42(9):3241-7. PubMed ID: 18522100
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cs(I) Cation Enhanced Cu(II) Catalysis of Water Oxidation.
    Zhu L; Du J; Zuo S; Chen Z
    Inorg Chem; 2016 Jul; 55(14):7135-40. PubMed ID: 27352033
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)n(Ag)s nanoparticle.
    Jiang Z; Liu Q; Liu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Oct; 58(12):2759-64. PubMed ID: 12396057
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Redox artifacts in electrophysiological recordings.
    Berman JM; Awayda MS
    Am J Physiol Cell Physiol; 2013 Apr; 304(7):C604-13. PubMed ID: 23344161
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ag/AgCl/Cl- coated silver-stripe reference electrode.
    Yalcinkaya F; Powner ET
    Med Eng Phys; 1997 Apr; 19(3):299-301. PubMed ID: 9239651
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chloride Oxidation by One- or Two-Photon Excitation of
    Li P; Deetz AM; Hu J; Meyer GJ; Hu K
    J Am Chem Soc; 2022 Sep; 144(38):17604-17610. PubMed ID: 36102900
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chloride-depletion of photosynthetic water oxidase. No proton release during the second oxidation step, S2*==>S3*, and a transmembrane radical pair recombination from the third on.
    Lübbers K; Drevenstedt W; Junge W
    FEBS Lett; 1993 Dec; 336(2):304-8. PubMed ID: 8262251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.