BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25700125)

  • 1. How does a collision warning system shape driver's brake response time? The influence of expectancy and automation complacency on real-life emergency braking.
    Ruscio D; Ciceri MR; Biassoni F
    Accid Anal Prev; 2015 Apr; 77():72-81. PubMed ID: 25700125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age and gender differences in time to collision at braking from the 100-Car Naturalistic Driving Study.
    Montgomery J; Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S15-20. PubMed ID: 25307380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eye movement and brake reactions to real world brake-capacity forward collision warnings--a naturalistic driving study.
    Wege C; Will S; Victor T
    Accid Anal Prev; 2013 Sep; 58():259-70. PubMed ID: 23068426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy-truck drivers' following behavior with intervention of an integrated, in-vehicle crash warning system: a field evaluation.
    Bao S; LeBlanc DJ; Sayer JR; Flannagan C
    Hum Factors; 2012 Oct; 54(5):687-97. PubMed ID: 23156615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrophysiological study of the impact of a Forward Collision Warning System in a simulator driving task.
    Bueno M; Fabrigoule C; Deleurence P; Ndiaye D; Fort A
    Brain Res; 2012 Aug; 1470():69-79. PubMed ID: 22765914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of tactile, visual, and auditory warnings for rear-end collision prevention in simulated driving.
    Scott JJ; Gray R
    Hum Factors; 2008 Apr; 50(2):264-75. PubMed ID: 18516837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driving with a partially autonomous forward collision warning system: how do drivers react?
    Muhrer E; Reinprecht K; Vollrath M
    Hum Factors; 2012 Oct; 54(5):698-708. PubMed ID: 23156616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.
    Cicchino JB; McCartt AT
    Traffic Inj Prev; 2015; 16():298-303. PubMed ID: 24983299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volvo drivers' experiences with advanced crash avoidance and related technologies.
    Eichelberger AH; McCartt AT
    Traffic Inj Prev; 2014; 15(2):187-95. PubMed ID: 24345022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator.
    Lee JD; McGehee DV; Brown TL; Reyes ML
    Hum Factors; 2002; 44(2):314-34. PubMed ID: 12452276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulator study of young driver's instinctive response of lower extremity to a collision.
    Gao Z; Li C; Hu H; Zhao H; Chen C; Yu H
    Traffic Inj Prev; 2016 May; 17(4):423-9. PubMed ID: 26375629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Looming auditory collision warnings for driving.
    Gray R
    Hum Factors; 2011 Feb; 53(1):63-74. PubMed ID: 21469534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population distributions of time to collision at brake application during car following from naturalistic driving data.
    Kusano KD; Chen R; Montgomery J; Gabler HC
    J Safety Res; 2015 Sep; 54():95-104. PubMed ID: 26403908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of different informative vibrotactile forward collision warnings: does the warning need to be linked to the collision event?
    Gray R; Ho C; Spence C
    PLoS One; 2014; 9(1):e87070. PubMed ID: 24475225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into the effect of an intersection crash warning system on driving performance in a simulator.
    Chen H; Cao L; Logan DB
    Traffic Inj Prev; 2011 Oct; 12(5):529-37. PubMed ID: 21972864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimal study of young male drivers' responses to vehicle collision using EMG of lower extremity.
    Gao Z; Li C; Hu H; Zhao H; Chen C; Yu H
    Biomed Mater Eng; 2015; 26 Suppl 1():S563-73. PubMed ID: 26406050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Car Gestures - Advisory warning using additional steering wheel angles.
    Maag C; Schneider N; Lübbeke T; Weisswange TH; Goerick C
    Accid Anal Prev; 2015 Oct; 83():143-53. PubMed ID: 26264518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A farewell to brake reaction times? Kinematics-dependent brake response in naturalistic rear-end emergencies.
    Markkula G; Engström J; Lodin J; Bärgman J; Victor T
    Accid Anal Prev; 2016 Oct; 95(Pt A):209-26. PubMed ID: 27450793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.