These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease. Buren C; Parsons MP; Smith-Dijak A; Raymond LA Neurobiol Dis; 2016 Mar; 87():80-90. PubMed ID: 26711622 [TBL] [Abstract][Full Text] [Related]
3. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease. Plotkin JL; Day M; Peterson JD; Xie Z; Kress GJ; Rafalovich I; Kondapalli J; Gertler TS; Flajolet M; Greengard P; Stavarache M; Kaplitt MG; Rosinski J; Chan CS; Surmeier DJ Neuron; 2014 Jul; 83(1):178-88. PubMed ID: 24991961 [TBL] [Abstract][Full Text] [Related]
4. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. Kolodziejczyk K; Raymond LA Neurobiol Dis; 2016 Feb; 86():62-74. PubMed ID: 26621114 [TBL] [Abstract][Full Text] [Related]
5. Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease. Parievsky A; Moore C; Kamdjou T; Cepeda C; Meshul CK; Levine MS Neurobiol Dis; 2017 Dec; 108():29-44. PubMed ID: 28757327 [TBL] [Abstract][Full Text] [Related]
6. The corticostriatal pathway in Huntington's disease. Cepeda C; Wu N; André VM; Cummings DM; Levine MS Prog Neurobiol; 2007 Apr; 81(5-6):253-71. PubMed ID: 17169479 [TBL] [Abstract][Full Text] [Related]
7. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Ghiglieri V; Bagetta V; Calabresi P; Picconi B Neuroscience; 2012 Jun; 211():165-84. PubMed ID: 21756979 [TBL] [Abstract][Full Text] [Related]
8. Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice. Rothe T; Deliano M; Wójtowicz AM; Dvorzhak A; Harnack D; Paul S; Vagner T; Melnick I; Stark H; Grantyn R Neuroscience; 2015 Dec; 311():519-38. PubMed ID: 26546830 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease. Sepers MD; Raymond LA Drug Discov Today; 2014 Jul; 19(7):990-6. PubMed ID: 24603212 [TBL] [Abstract][Full Text] [Related]
10. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington's disease. Connor B; Sun Y; von Hieber D; Tang SK; Jones KS; Maucksch C Gene Ther; 2016 Mar; 23(3):283-95. PubMed ID: 26704721 [TBL] [Abstract][Full Text] [Related]
11. Synaptic scaling up in medium spiny neurons of aged BACHD mice: A slow-progression model of Huntington's disease. Rocher AB; Gubellini P; Merienne N; Boussicault L; Petit F; Gipchtein P; Jan C; Hantraye P; Brouillet E; Bonvento G Neurobiol Dis; 2016 Feb; 86():131-9. PubMed ID: 26626081 [TBL] [Abstract][Full Text] [Related]
12. Disrupted striatal neuron inputs and outputs in Huntington's disease. Reiner A; Deng YP CNS Neurosci Ther; 2018 Apr; 24(4):250-280. PubMed ID: 29582587 [TBL] [Abstract][Full Text] [Related]
13. Altered distribution of striatal activity-dependent synaptic plasticity in the 3-nitropropionic acid model of Huntington's disease. Dalbem A; Silveira CV; Pedroso MF; Breda RV; Werne Baes CV; Bartmann AP; da Costa JC Brain Res; 2005 Jun; 1047(2):148-58. PubMed ID: 15901483 [TBL] [Abstract][Full Text] [Related]
14. In vivo mitochondrial inhibition alters corticostriatal synaptic function and the modulatory effects of neurotrophins. Mendoza E; Miranda-Barrientos JA; Vázquez-Roque RA; Morales-Herrera E; Ruelas A; De la Rosa G; Flores G; Hernández-Echeagaray E Neuroscience; 2014 Nov; 280():156-70. PubMed ID: 25241069 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Li W; Silva HB; Real J; Wang YM; Rial D; Li P; Payen MP; Zhou Y; Muller CE; Tomé AR; Cunha RA; Chen JF Neurobiol Dis; 2015 Jul; 79():70-80. PubMed ID: 25892655 [TBL] [Abstract][Full Text] [Related]
16. It's not necessarily all about the delivery in Huntington's disease. Parsons MP; Raymond LA Neuron; 2014 Jul; 83(1):6-8. PubMed ID: 24991950 [TBL] [Abstract][Full Text] [Related]
17. Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice. Deng YP; Wong T; Bricker-Anthony C; Deng B; Reiner A Neurobiol Dis; 2013 Dec; 60():89-107. PubMed ID: 23969239 [TBL] [Abstract][Full Text] [Related]
18. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease. Samadi P; Boutet A; Rymar VV; Rawal K; Maheux J; Kvann JC; Tomaszewski M; Beaubien F; Cloutier JF; Levesque D; Sadikot AF Genes Brain Behav; 2013 Feb; 12(1):108-24. PubMed ID: 23006318 [TBL] [Abstract][Full Text] [Related]
19. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease. Nithianantharajah J; Hannan AJ Neuroscience; 2013 Oct; 251():66-74. PubMed ID: 22633949 [TBL] [Abstract][Full Text] [Related]