These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 25700210)

  • 1. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen.
    Han N; Yang Z; Wang F; Yip S; Dong G; Liang X; Hung T; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5591-7. PubMed ID: 25700210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties.
    Han N; Hou JJ; Wang F; Yip S; Yen YT; Yang ZX; Dong G; Hung T; Chueh YL; Ho JC
    ACS Nano; 2013 Oct; 7(10):9138-46. PubMed ID: 24016352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications.
    Yang ZX; Wang F; Han N; Lin H; Cheung HY; Fang M; Yip S; Hung T; Wong CY; Ho JC
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10946-52. PubMed ID: 24107082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates.
    Han N; Wang F; Hui AT; Hou JJ; Shan G; Xiu F; Hung T; Ho JC
    Nanotechnology; 2011 Jul; 22(28):285607. PubMed ID: 21654028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires.
    Wang B; Stelzner T; Dirawi R; Assad O; Shehada N; Christiansen S; Haick H
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4251-8. PubMed ID: 22817278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates.
    Han N; Hou JJ; Wang F; Yip S; Lin H; Fang M; Xiu F; Shi X; Hung T; Ho JC
    Nanoscale Res Lett; 2012 Nov; 7(1):632. PubMed ID: 23171521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors.
    Chen SY; Wang CY; Ford AC; Chou JC; Wang YC; Wang FY; Ho JC; Wang HC; Javey A; Gan JY; Chen LJ; Chueh YL
    Phys Chem Chem Phys; 2013 Feb; 15(8):2654-9. PubMed ID: 23340577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors.
    Zou X; Liu X; Wang C; Jiang Y; Wang Y; Xiao X; Ho JC; Li J; Jiang C; Xiong Q; Liao L
    ACS Nano; 2013 Jan; 7(1):804-10. PubMed ID: 23228028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A technique for large-area position-controlled growth of GaAs nanowire arrays.
    Kauppinen C; Haggren T; Kravchenko A; Jiang H; Huhtio T; Kauppinen E; Dhaka V; Suihkonen S; Kaivola M; Lipsanen H; Sopanen M
    Nanotechnology; 2016 Apr; 27(13):135601. PubMed ID: 26895144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of p-type GaN nanowires.
    Kim SW; Park YH; Kim I; Park TE; Kwon BW; Choi WK; Choi HJ
    Nanoscale; 2013 Sep; 5(18):8550-4. PubMed ID: 23892611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.
    Van NH; Lee JH; Sohn JI; Cha SN; Whang D; Kim JM; Kang DJ
    Nanoscale; 2014 May; 6(10):5479-83. PubMed ID: 24727896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.
    Van NH; Lee JH; Whang D; Kang DJ
    Nanoscale; 2016 Jun; 8(23):12022-8. PubMed ID: 27240692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.
    Wang Y; Yang Z; Wu X; Han N; Liu H; Wang S; Li J; Tse W; Yip S; Chen Y; Ho JC
    Nanoscale Res Lett; 2016 Dec; 11(1):191. PubMed ID: 27071678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun p-Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect Transistors.
    Liu A; Meng Y; Zhu H; Noh YY; Liu G; Shan F
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):25841-25849. PubMed ID: 28937205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires.
    Opoku C; Dahiya AS; Oshman C; Daumont C; Cayrel F; Poulin-Vittrant G; Alquier D; Camara N
    Nanotechnology; 2015 Sep; 26(35):355704. PubMed ID: 26245930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.
    Yu X; Li L; Wang H; Xiao J; Shen C; Pan D; Zhao J
    Nanoscale; 2016 May; 8(20):10615-21. PubMed ID: 27194599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect.
    Liu C; Dai L; You LP; Xu WJ; Qin GG
    Nanotechnology; 2008 Nov; 19(46):465203. PubMed ID: 21836237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.