These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25700274)

  • 1. Lead-free antiferroelectric: xCaZrO3-(1 -x)NaNbO3 system (0 ≤x≤ 0.10).
    Shimizu H; Guo H; Reyes-Lillo SE; Mizuno Y; Rabe KM; Randall CA
    Dalton Trans; 2015 Jun; 44(23):10763-72. PubMed ID: 25700274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of composition and pressure on the electric field-induced antiferroelectric to ferroelectric phase transformation in lanthanum modified lead zirconate titanate ceramics.
    Peláiz-Barranco A; Hall DA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1785-91. PubMed ID: 19811977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible electric-field-induced phase transition in Ca-modified NaNbO
    Aso S; Matsuo H; Noguchi Y
    Sci Rep; 2023 Apr; 13(1):6771. PubMed ID: 37186239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-defined double hysteresis loop in NaNbO
    Luo N; Ma L; Luo G; Xu C; Rao L; Chen Z; Cen Z; Feng Q; Chen X; Toyohisa F; Zhu Y; Hong J; Li JF; Zhang S
    Nat Commun; 2023 Mar; 14(1):1776. PubMed ID: 36997552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Ultrahigh Energy Storage Performance for NaNbO
    Wei K; Duan J; Zhou X; Li G; Zhang D; Li H
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48354-48364. PubMed ID: 37791962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized Electrocaloric Refrigeration in Lead-Free NaNbO
    Wu J; Qi H; Yao Y; Chen L; Li W; Liu H; Deng S; Chen J
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excellent Energy-Storage Performance of (0.85 -
    Xie A; Chen J; Zuo J; Liu J; Li T; Jiang X; Zuo R
    ACS Appl Mater Interfaces; 2023 May; 15(18):22301-22309. PubMed ID: 37126568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Local Structural Distortions on Antiferroelectric-Ferroelectric Phase Transition in Dilute Solid Solutions of K
    Htet CS; Manjón-Sanz AM; Liu J; Kong J; Marlton FP; Nayak S; Jørgensen MRV; Pramanick A
    Inorg Chem; 2022 Dec; 61(50):20277-20287. PubMed ID: 36463497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combined Optimization Strategy for Improvement of Comprehensive Energy Storage Performance in Sodium Niobate-Based Antiferroelectric Ceramics.
    Wang X; Wang X; Huan Y; Li C; Ouyang J; Wei T
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9330-9339. PubMed ID: 35156378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible and High-Temperature-Stabilized Strain in (Pb,La)(Zr,Sn,Ti)O
    Ji Y; Li Q; Zhuo F; Yan Q; Zhang Y; Chu X
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32135-32143. PubMed ID: 31394902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Energy Storage Density of Lead Lutetium Niobate Crystals by Electric Field-Induced Secondary Phase Transition
    Yang X; Zhuo F; Wang Z; Lv L; Liu Y; He C; Long X
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28239-28245. PubMed ID: 32496036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ transmission electron microscopy study on Nb-doped Pb(Zr 0.95 Ti 0.05)O3 ceramics.
    Qu W; Tan X; Yang P
    Microsc Res Tech; 2009 Mar; 72(3):216-22. PubMed ID: 19130612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiferroelectric Ceramics for Energy-Efficient Capacitors by Theory-Guided Discovery.
    Gaur APS; Choudhary R; Liu B; Mudryk Y; Johnson DD; Cui J; Tan X
    Adv Mater; 2024 May; ():e2312856. PubMed ID: 38775656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of antiferroelectricity in NH4H2PO4 from first principles.
    Lasave J; Koval S; Dalal NS; Migoni RL
    Phys Rev Lett; 2007 Jun; 98(26):267601. PubMed ID: 17678127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy of a Stabilized Antiferroelectric Phase and Domain Engineering Boosting the Energy Storage Performance of NaNbO
    Liu J; Li P; Li C; Bai W; Wu S; Zheng P; Zhang J; Zhai J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17662-17673. PubMed ID: 35389613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping.
    Zhao L; Gao J; Liu Q; Zhang S; Li JF
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):819-826. PubMed ID: 29243905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-Temperature Antiferroelectricity in Multiferroic Hexagonal Rare-Earth Ferrites.
    Kasahara J; Katayama T; Mo S; Chikamatsu A; Hamasaki Y; Yasui S; Itoh M; Hasegawa T
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4230-4235. PubMed ID: 33428846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi deficiency-tuned functionality in multiferroic Bi1-δFe0.95Mn0.05O3 films.
    Chen J; Wang Y; Wang H; Zhang S; Deng Y
    Sci Rep; 2016 Jan; 6():19385. PubMed ID: 26775621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Remarkable Amplification of Energy-Storage Density in Two-Step Sintered NaNbO
    Xie A; Qi H; Zuo R
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19467-19475. PubMed ID: 32250098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST.
    Lu T; Studer AJ; Noren L; Hu W; Yu D; McBride B; Feng Y; Withers RL; Chen H; Xu Z; Liu Y
    Sci Rep; 2016 Mar; 6():23659. PubMed ID: 27025685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.