These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 25700283)
1. p53 and ΔNp63α Coregulate the Transcriptional and Cellular Response to TGFβ and BMP Signals. Balboni AL; Cherukuri P; Ung M; DeCastro AJ; Cheng C; DiRenzo J Mol Cancer Res; 2015 Apr; 13(4):732-42. PubMed ID: 25700283 [TBL] [Abstract][Full Text] [Related]
2. ΔNp63α Silences a miRNA Program to Aberrantly Initiate a Wound-Healing Program That Promotes TGFβ-Induced Metastasis. Rodriguez Calleja L; Jacques C; Lamoureux F; Baud'huin M; Tellez Gabriel M; Quillard T; Sahay D; Perrot P; Amiaud J; Charrier C; Brion R; Lecanda F; Verrecchia F; Heymann D; Ellisen LW; Ory B Cancer Res; 2016 Jun; 76(11):3236-51. PubMed ID: 26988989 [TBL] [Abstract][Full Text] [Related]
3. deltaNp63alpha functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. King KE; Ponnamperuma RM; Yamashita T; Tokino T; Lee LA; Young MF; Weinberg WC Oncogene; 2003 Jun; 22(23):3635-44. PubMed ID: 12789272 [TBL] [Abstract][Full Text] [Related]
4. Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo. Conidi A; Cazzola S; Beets K; Coddens K; Collart C; Cornelis F; Cox L; Joke D; Dobreva MP; Dries R; Esguerra C; Francis A; Ibrahimi A; Kroes R; Lesage F; Maas E; Moya I; Pereira PN; Stappers E; Stryjewska A; van den Berghe V; Vermeire L; Verstappen G; Seuntjens E; Umans L; Zwijsen A; Huylebroeck D Cytokine Growth Factor Rev; 2011; 22(5-6):287-300. PubMed ID: 22119658 [TBL] [Abstract][Full Text] [Related]
5. TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Hullinger TG; Pan Q; Viswanathan HL; Somerman MJ Exp Cell Res; 2001 Jan; 262(1):69-74. PubMed ID: 11120606 [TBL] [Abstract][Full Text] [Related]
6. ΔNp63α-mediated activation of bone morphogenetic protein signaling governs stem cell activity and plasticity in normal and malignant mammary epithelial cells. Balboni AL; Hutchinson JA; DeCastro AJ; Cherukuri P; Liby K; Sporn MB; Schwartz GN; Wells WA; Sempere LF; Yu PB; DiRenzo J Cancer Res; 2013 Jan; 73(2):1020-30. PubMed ID: 23243027 [TBL] [Abstract][Full Text] [Related]
7. A molecular basis for Smad specificity. Lagna G; Hemmati-Brivanlou A Dev Dyn; 1999 Mar; 214(3):269-77. PubMed ID: 10090153 [TBL] [Abstract][Full Text] [Related]
8. Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Sundqvist A; Zieba A; Vasilaki E; Herrera Hidalgo C; Söderberg O; Koinuma D; Miyazono K; Heldin CH; Landegren U; Ten Dijke P; van Dam H Oncogene; 2013 Aug; 32(31):3606-15. PubMed ID: 22926518 [TBL] [Abstract][Full Text] [Related]
9. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Ampuja M; Kallioniemi A Genes Chromosomes Cancer; 2018 Jan; 57(1):3-11. PubMed ID: 28857319 [TBL] [Abstract][Full Text] [Related]
10. Cell density-dependent acetylation of ΔNp63α is associated with p53-dependent cell cycle arrest. Chae YS; Kim H; Kim D; Lee H; Lee HO FEBS Lett; 2012 Apr; 586(8):1128-34. PubMed ID: 22575646 [TBL] [Abstract][Full Text] [Related]
11. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. Sapkota G; Knockaert M; Alarcón C; Montalvo E; Brivanlou AH; Massagué J J Biol Chem; 2006 Dec; 281(52):40412-9. PubMed ID: 17085434 [TBL] [Abstract][Full Text] [Related]
12. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. Postigo AA EMBO J; 2003 May; 22(10):2443-52. PubMed ID: 12743038 [TBL] [Abstract][Full Text] [Related]
14. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Adorno M; Cordenonsi M; Montagner M; Dupont S; Wong C; Hann B; Solari A; Bobisse S; Rondina MB; Guzzardo V; Parenti AR; Rosato A; Bicciato S; Balmain A; Piccolo S Cell; 2009 Apr; 137(1):87-98. PubMed ID: 19345189 [TBL] [Abstract][Full Text] [Related]
15. ΔNp63α utilizes multiple mechanisms to repress transcription in squamous cell carcinoma cells. Gallant-Behm CL; Espinosa JM Cell Cycle; 2013 Feb; 12(3):409-16. PubMed ID: 23324337 [TBL] [Abstract][Full Text] [Related]
16. Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. Afzal F; Pratap J; Ito K; Ito Y; Stein JL; van Wijnen AJ; Stein GS; Lian JB; Javed A J Cell Physiol; 2005 Jul; 204(1):63-72. PubMed ID: 15573378 [TBL] [Abstract][Full Text] [Related]
17. Smad-Runx interactions during chondrocyte maturation. Leboy P; Grasso-Knight G; D'Angelo M; Volk SW; Lian JV; Drissi H; Stein GS; Adams SL J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 1):S15-22. PubMed ID: 11263661 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Ader T; Norel R; Levoci L; Rogler LE Mech Dev; 2006 Feb; 123(2):177-94. PubMed ID: 16412614 [TBL] [Abstract][Full Text] [Related]
19. SMAD expression in the testis: an insight into BMP regulation of spermatogenesis. Itman C; Loveland KL Dev Dyn; 2008 Jan; 237(1):97-111. PubMed ID: 18069690 [TBL] [Abstract][Full Text] [Related]
20. A road map toward defining the role of Smad signaling in hematopoietic stem cells. Utsugisawa T; Moody JL; Aspling M; Nilsson E; Carlsson L; Karlsson S Stem Cells; 2006 Apr; 24(4):1128-36. PubMed ID: 16357343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]