These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25700435)

  • 1. Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.
    Xiaohua F; Fei G; Yuanjin Z
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1728-1737. PubMed ID: 25700435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Control of Nanoparticle-Mediated Thermal Therapy Using Photoacoustic Imaging.
    Assi H; Yang C; Shaswary E; Tam M; Tavakkoli J; Kolios M; Peyman G; Kumaradas C
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2188-2194. PubMed ID: 33186098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.
    Foiret J; Ferrara KW
    PLoS One; 2015; 10(8):e0134938. PubMed ID: 26244783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.
    Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.
    Bazán I; Vazquez M; Ramos A; Vera A; Leija L
    Ultrasonics; 2009 Mar; 49(3):358-76. PubMed ID: 19100591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipoint temperature control during hyperthermia treatments: theory and simulation.
    VanBaren P; Ebbini ES
    IEEE Trans Biomed Eng; 1995 Aug; 42(8):818-27. PubMed ID: 7642196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic temperature controller for multielement array hyperthermia systems.
    Johnson JE; Maccarini PF; Neuman D; Stauffer PR
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1006-15. PubMed ID: 16761827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self temperature regulation of photothermal therapy by laser-shared photoacoustic feedback.
    Feng X; Gao F; Xu C; Gaoming L; Zheng Y
    Opt Lett; 2015 Oct; 40(19):4492-5. PubMed ID: 26421564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.
    Manaf NA; Aziz MN; Ridzuan DS; Mohamad Salim MI; Wahab AA; Lai KW; Hum YC
    Med Biol Eng Comput; 2016 Jun; 54(6):967-81. PubMed ID: 27039402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation.
    Kowalski ME; Jin JM
    Phys Med Biol; 2003 Mar; 48(5):633-51. PubMed ID: 12696800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].
    Jiang F; Bai J; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):836-9. PubMed ID: 16156285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of closed-loop feedback control of minimum temperatures in human intracranial tumours treated with interstitial hyperthermia.
    DeFord JA; Babbs CF; Patel UH; Fearnot NE; Marchosky JA; Moran CJ
    Med Biol Eng Comput; 1991 Mar; 29(2):197-206. PubMed ID: 1857126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.