These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25700435)

  • 21. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom.
    Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoacoustic thermography of tissue.
    Ke H; Tai S; Wang LV
    J Biomed Opt; 2014 Feb; 19(2):026003. PubMed ID: 24522803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia.
    Fenn AJ; King GA
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localised hyperthermia in rodent models using an MRI-compatible high-intensity focused ultrasound system.
    Bing C; Nofiele J; Staruch R; Ladouceur-Wodzak M; Chatzinoff Y; Ranjan A; Chopra R
    Int J Hyperthermia; 2015; 31(8):813-22. PubMed ID: 26540488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles.
    Feng X; Gao F; Zheng Y
    Opt Lett; 2014 Jun; 39(12):3414-7. PubMed ID: 24978499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.
    Bellizzi G; Bucci OM
    Int J Hyperthermia; 2010; 26(4):389-403. PubMed ID: 20210609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours.
    Novák P; Moros EG; Parry JJ; Rogers BE; Myerson RJ; Zeug A; Locke JE; Rossin R; Straube WL; Singh AK
    Phys Med Biol; 2005 Nov; 50(21):5127-39. PubMed ID: 16237245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia.
    Attaluri A; Ma R; Qiu Y; Li W; Zhu L
    Int J Hyperthermia; 2011; 27(5):491-502. PubMed ID: 21756046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids.
    Di Michele F; Pizzichelli G; Mazzolai B; Sinibaldi E
    Math Biosci; 2015 Apr; 262():105-16. PubMed ID: 25640871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The feasibility of MRI feedback control for intracavitary phased array hyperthermia treatments.
    Hutchinson E; Dahleh M; Hynynen K
    Int J Hyperthermia; 1998; 14(1):39-56. PubMed ID: 9483445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia.
    Kobayashi T; Kakimi K; Nakayama E; Jimbow K
    Nanomedicine (Lond); 2014 Aug; 9(11):1715-26. PubMed ID: 25321171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Part-body hyperthermia with a radiofrequency multiantenna applicator under online control in a 1.5 T MR-tomograph].
    Wust P; Gellermann J; Seebass M; Fähling H; Turner P; Wlodarczyk W; Nadobny J; Rau B; Hildebrandt B; Oppelt A; Schlag PM; Felix R
    Rofo; 2004 Mar; 176(3):363-74. PubMed ID: 15026950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of objects in photoacoustic tomography using selective filtering.
    Shin DH; Yang Y; Song CG
    Biomed Mater Eng; 2015; 26 Suppl 1():S1223-30. PubMed ID: 26405881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.
    Hu J; Qian S; Ding Y
    Ultrasonics; 2010 May; 50(6):628-33. PubMed ID: 20156630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noninvasive thermometry assisted by a dual-function ultrasound transducer for mild hyperthermia.
    Lai CY; Kruse DE; Caskey CF; Stephens DN; Sutcliffe PL; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2671-84. PubMed ID: 21156363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A methodology for determining optimal thermal damage in magnetic nanoparticle hyperthermia cancer treatment.
    Mital M; Tafreshi HV
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):205-13. PubMed ID: 25099326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artefacts in intracavitary temperature measurements during regional hyperthermia.
    Kok HP; Van den Berg CA; Van Haaren PM; Crezee J
    Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical and experimental evaluation of a temperature controller for scanned focused ultrasound hyperthermia.
    Lin WL; Roemer RB; Hynynen K
    Med Phys; 1990; 17(4):615-25. PubMed ID: 2215406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments.
    Gayzik FS; Scott EP; Loulou T
    J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.