BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25700453)

  • 1. Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression.
    Zhang X; Hu B; Ma X; Xu L
    IEEE Trans Nanobioscience; 2015 Mar; 14(2):237-47. PubMed ID: 25700453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment.
    Franzmeier N; Caballero MÁA; Taylor ANW; Simon-Vermot L; Buerger K; Ertl-Wagner B; Mueller C; Catak C; Janowitz D; Baykara E; Gesierich B; Duering M; Ewers M;
    Brain Imaging Behav; 2017 Apr; 11(2):368-382. PubMed ID: 27709513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain connectivity hyper-network for MCI classification.
    Jie B; Shen D; Zhang D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):724-32. PubMed ID: 25485444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI.
    Yao H; Liu Y; Zhou B; Zhang Z; An N; Wang P; Wang L; Zhang X; Jiang T
    Eur J Radiol; 2013 Sep; 82(9):1531-8. PubMed ID: 23643516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constrained sparse functional connectivity networks for MCI classification.
    Wee CY; Yap PT; Zhang D; Wang L; Shen D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):212-9. PubMed ID: 23286051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connectome-based model predicts episodic memory performance in individuals with subjective cognitive decline and amnestic mild cognitive impairment.
    Zhu Y; Zang F; Wang Q; Zhang Q; Tan C; Zhang S; Hu T; Qi L; Xu S; Ren Q; Xie C
    Behav Brain Res; 2021 Aug; 411():113387. PubMed ID: 34048872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating functional brain networks by incorporating a modularity prior.
    Qiao L; Zhang H; Kim M; Teng S; Zhang L; Shen D
    Neuroimage; 2016 Nov; 141():399-407. PubMed ID: 27485752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
    Shen H; Wang L; Liu Y; Hu D
    Neuroimage; 2010 Feb; 49(4):3110-21. PubMed ID: 19931396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal alteration of amygdalar functional connectivity in mild cognitive impairment subjects revealed by resting-state FMRI.
    Yao H; Zhou B; Zhang Z; Wang P; Guo Y; Shang Y; Wang L; Zhang X; An N; Liu Y;
    Brain Connect; 2014 Jun; 4(5):361-70. PubMed ID: 24846713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment.
    Ou J; Xie L; Li X; Zhu D; Terry DP; Puente AN; Jiang R; Chen Y; Wang L; Shen D; Zhang J; Miller LS; Liu T
    Brain Imaging Behav; 2015 Dec; 9(4):663-77. PubMed ID: 25355371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Clin Neurophysiol; 2015 Nov; 126(11):2132-41. PubMed ID: 25907414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant Functional Connectivity Architecture in Alzheimer's Disease and Mild Cognitive Impairment: A Whole-Brain, Data-Driven Analysis.
    Zhou B; Yao H; Wang P; Zhang Z; Zhan Y; Ma J; Xu K; Wang L; An N; Liu Y; Zhang X
    Biomed Res Int; 2015; 2015():495375. PubMed ID: 26167487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired Parahippocampus Connectivity in Mild Cognitive Impairment and Alzheimer's Disease.
    Liu J; Zhang X; Yu C; Duan Y; Zhuo J; Cui Y; Liu B; Li K; Jiang T; Liu Y
    J Alzheimers Dis; 2016; 49(4):1051-64. PubMed ID: 26599055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of brain pathway activities for Alzheimer's disease classification.
    Lee J; Kim Y; Jeong Y; Na DL; Kim JW; Lee KH; Lee D
    BMC Med Inform Decis Mak; 2015; 15 Suppl 1(Suppl 1):S1. PubMed ID: 26044913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis.
    Suk HI; Wee CY; Lee SW; Shen D
    Neuroinformatics; 2015 Jul; 13(3):277-95. PubMed ID: 25501275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network Optimization of Functional Connectivity Within Default Mode Network Regions to Detect Cognitive Decline.
    Chaovalitwongse WA; Won D; Seref O; Borghesani P; Askren MK; Willis S; Grabowski TJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1079-1089. PubMed ID: 28287976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic classification based on functional connectivity in chronic pain: model optimization in fibromyalgia and rheumatoid arthritis.
    Sundermann B; Burgmer M; Pogatzki-Zahn E; Gaubitz M; Stüber C; Wessolleck E; Heuft G; Pfleiderer B
    Acad Radiol; 2014 Mar; 21(3):369-77. PubMed ID: 24507423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Chronnectome Learning via Full Bidirectional Long Short-Term Memory Networks for MCI Diagnosis.
    Yan W; Zhang H; Sui J; Shen D
    Med Image Comput Comput Assist Interv; 2018 Sep; 11072():249-257. PubMed ID: 31179447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.