BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25700611)

  • 1. Assessing viscoelasticity of shear wave propagation in cervical tissue by multiscale computational simulation.
    Peralta L; Rus G; Bochud N; Molina FS
    J Biomech; 2015 Jun; 48(9):1549-56. PubMed ID: 25700611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic model characterization of human cervical tissue by torsional waves.
    Callejas A; Melchor J; Faris IH; Rus G
    J Mech Behav Biomed Mater; 2021 Mar; 115():104261. PubMed ID: 33340778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical assessment of cervical remodelling in pregnancy: insight from a synthetic model.
    Peralta L; Rus G; Bochud N; Molina FS
    J Biomech; 2015 Jun; 48(9):1557-65. PubMed ID: 25766389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave Propagation in a Fractional Viscoelastic Tissue Model: Application to Transluminal Procedures.
    Gomez A; Rus G; Saffari N
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Structural Heterogeneity and Viscosity in the Cervix Using Shear Wave Elasticity Imaging: Initial Results from a Rhesus Macaque Model.
    Rosado-Mendez IM; Palmeri ML; Drehfal LC; Guerrero QW; Simmons H; Feltovich H; Hall TJ
    Ultrasound Med Biol; 2017 Apr; 43(4):790-803. PubMed ID: 28189282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound Shear Wave Propagation Modeling in General Tissue-Like Viscoelastic Materials.
    Osika M; Kijanka P
    Ultrasound Med Biol; 2024 Apr; 50(4):627-638. PubMed ID: 38290911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of liver fibrosis in rats with shearwave dispersion ultrasound vibrometry: comparison with dynamic mechanical analysis.
    Zhu Y; Zhang X; Zheng Y; Chen X; Shen Y; Lin H; Guo Y; Wang T; Chen S
    Med Eng Phys; 2014 Nov; 36(11):1401-7. PubMed ID: 24835187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity.
    Klatt D; Hamhaber U; Asbach P; Braun J; Sack I
    Phys Med Biol; 2007 Dec; 52(24):7281-94. PubMed ID: 18065839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):343-58. PubMed ID: 18334341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of normal rat liver measured by ultrasound elastography: Comparison with oscillatory rheometry.
    Lin H; Shen Y; Chen X; Zhu Y; Zheng Y; Zhang X; Guo Y; Wang T; Chen S
    Biorheology; 2016; 53(5-6):193-207. PubMed ID: 27858670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive experimental assessments of rheological models' performance in elastography of soft tissues.
    Poul SS; Ormachea J; Ge GR; Parker KJ
    Acta Biomater; 2022 Jul; 146():259-273. PubMed ID: 35525481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks.
    Vasconcelos L; Kijanka P; Urban MW
    Comput Biol Med; 2021 Jun; 133():104382. PubMed ID: 33872971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New techniques in evaluation of the cervix.
    Feltovich H; Carlson L
    Semin Perinatol; 2017 Dec; 41(8):477-484. PubMed ID: 29191290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological assessment of a polymeric spherical structure using a three-dimensional shear wave scattering model in dynamic spectroscopy elastography.
    Montagnon E; Hadj-Henni A; Schmitt C; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):277-87. PubMed ID: 24474134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.