BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25700819)

  • 1. Heterologous biosynthesis of costunolide in Escherichia coli and yield improvement.
    Yin H; Zhuang YB; Li EE; Bi HP; Zhou W; Liu T
    Biotechnol Lett; 2015 Jun; 37(6):1249-55. PubMed ID: 25700819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway].
    Wu T; Wu S; Yin Q; Dai H; Li S; Dong F; Chen B; Fang H
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1040-8. PubMed ID: 22016988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli.
    Cao Y; Zhang R; Liu W; Zhao G; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2019 Jan; 9(1):95. PubMed ID: 30643175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli.
    Harada H; Misawa N
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1021-31. PubMed ID: 19672590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant-Saussurea lappa.
    Thakur V; Bains S; Pathania S; Sharma S; Kaur R; Singh K
    Int J Biol Macromol; 2020 May; 150():52-67. PubMed ID: 32035965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous biosynthesis of triterpenoid ambrein in engineered Escherichia coli.
    Ke D; Caiyin Q; Zhao F; Liu T; Lu W
    Biotechnol Lett; 2018 Feb; 40(2):399-404. PubMed ID: 29204767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol.
    Pereira B; Zhang H; De Mey M; Lim CG; Li ZJ; Stephanopoulos G
    Biotechnol Bioeng; 2016 Feb; 113(2):376-83. PubMed ID: 26221864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered
    Aguilar F; Scheper T; Beutel S
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31238595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Escherichia coli to convert acetic acid to β-caryophyllene.
    Yang J; Nie Q
    Microb Cell Fact; 2016 May; 15():74. PubMed ID: 27149950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana.
    Liu Q; Majdi M; Cankar K; Goedbloed M; Charnikhova T; Verstappen FW; de Vos RC; Beekwilder J; van der Krol S; Bouwmeester HJ
    PLoS One; 2011; 6(8):e23255. PubMed ID: 21858047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli.
    Takemura M; Tanaka R; Misawa N
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6615-6625. PubMed ID: 28710558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway.
    Eljounaidi K; Cankar K; Comino C; Moglia A; Hehn A; Bourgaud F; Bouwmeester H; Menin B; Lanteri S; Beekwilder J
    Plant Sci; 2014 Jun; 223():59-68. PubMed ID: 24767116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability.
    Centeno-Leija S; Huerta-Beristain G; Giles-Gómez M; Bolivar F; Gosset G; Martinez A
    Antonie Van Leeuwenhoek; 2014 Apr; 105(4):687-96. PubMed ID: 24500003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli.
    Kim MJ; Kim BG; Ahn JH
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7195-204. PubMed ID: 23771780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of Eupatolide-A Metabolic Route for Sesquiterpene Lactone Formation Involving the P450 Enzyme CYP71DD6.
    Frey M; Schmauder K; Pateraki I; Spring O
    ACS Chem Biol; 2018 Jun; 13(6):1536-1543. PubMed ID: 29758164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.
    Zhang H; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3333-41. PubMed ID: 23179615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies.
    Majdi M; Ashengroph M; Abdollahi MR
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1041-1059. PubMed ID: 26567019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.
    Kong MK; Kang HJ; Kim JH; Oh SH; Lee PC
    J Biotechnol; 2015 Nov; 214():95-102. PubMed ID: 26392384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.