BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 25700866)

  • 1. Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion.
    Sun X; Cai X; Wang RQ; Xiao J
    Anal Biochem; 2015 May; 477():21-7. PubMed ID: 25700866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage.
    Fan C; Shi Z; Pan Y; Song Z; Zhang W; Zhao X; Tian F; Peng B; Qin W; Cai Y; Qian X
    Anal Chem; 2014 Feb; 86(3):1452-8. PubMed ID: 24447065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of trypsin onto Fe
    Aslani E; Abri A; Pazhang M
    Colloids Surf B Biointerfaces; 2018 Oct; 170():553-562. PubMed ID: 29975903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
    Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y
    J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.
    Qin W; Song Z; Fan C; Zhang W; Cai Y; Zhang Y; Qian X
    Anal Chem; 2012 Apr; 84(7):3138-44. PubMed ID: 22413971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel superparamagnetic sanoparticles for trypsin immobilization and the application for efficient proteolysis.
    Sun J; Hu K; Liu Y; Pan Y; Yang Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 942-943():9-14. PubMed ID: 24211332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An aptamer-based trypsin reactor for on-line protein digestion with electrospray ionization tandem mass spectrometry.
    Xiao P; Lv X; Wang S; Iqbal J; Qing H; Li Q; Deng Y
    Anal Biochem; 2013 Oct; 441(2):123-32. PubMed ID: 23831476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion.
    Pečová M; Šebela M; Marková Z; Poláková K; Čuda J; Šafářová K; Zbořil R
    Nanotechnology; 2013 Mar; 24(12):125102. PubMed ID: 23466477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity.
    Hinterwirth H; Lindner W; Lämmerhofer M
    Anal Chim Acta; 2012 Jul; 733():90-7. PubMed ID: 22704381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue.
    Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y
    J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.
    Shangguan L; Zhang L; Xiong Z; Ren J; Zhang R; Gao F; Zhang W
    J Chromatogr A; 2015 Apr; 1388():158-66. PubMed ID: 25728656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of casein from different sources by immobilized trypsin on biochar: Effect of immobilization method.
    Souza Júnior EC; Santos MPF; Sampaio VS; Ferrão SPB; Fontan RCI; Bonomo RCF; Veloso CM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jun; 1146():122124. PubMed ID: 32361468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H; Zhang L; Zhang Y
    J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping.
    Bao H; Lui T; Zhang L; Chen G
    Proteomics; 2009 Feb; 9(4):1114-7. PubMed ID: 19180540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis.
    Li Y; Xu X; Deng C; Yang P; Zhang X
    J Proteome Res; 2007 Sep; 6(9):3849-55. PubMed ID: 17676785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
    Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F
    J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis.
    Verma ML; Barrow CJ; Kennedy JF; Puri M
    Int J Biol Macromol; 2012 Mar; 50(2):432-7. PubMed ID: 22230612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J; Hou C; Liang Y; Wang T; Liang Z; Zhang L; Zhang Y
    Proteomics; 2011 Mar; 11(5):991-5. PubMed ID: 21280225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
    Liu T; Wang S; Chen G
    Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholinesterase immobilized onto PEI-coated silica nanoparticles.
    Tumturk H; Yüksekdag H
    Artif Cells Nanomed Biotechnol; 2016; 44(2):443-7. PubMed ID: 25365355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.