These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters. Dorati R; Genta I; Colzani B; Tripodo G; Conti B Drug Dev Ind Pharm; 2015; 41(7):1182-92. PubMed ID: 24994001 [TBL] [Abstract][Full Text] [Related]
3. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Camargo JA; Sapin A; Nouvel C; Daloz D; Leonard M; Bonneaux F; Six JL; Maincent P Drug Dev Ind Pharm; 2013 Jan; 39(1):146-55. PubMed ID: 22397675 [TBL] [Abstract][Full Text] [Related]
4. Ivermectin-loaded microparticles for parenteral sustained release: in vitro characterization and effect of some formulation variables. Camargo JA; Sapin A; Daloz D; Maincent P J Microencapsul; 2010; 27(7):609-17. PubMed ID: 20695833 [TBL] [Abstract][Full Text] [Related]
5. Ameliorating the antiparasitic activity of the multifaceted drug ivermectin through a polymer nanocapsule formulation. de Souza ZC; Júnior FHX; Pinheiro IO; de Souza Rebouças J; de Abreu BO; Mesquita PRR; de Medeiros Rodrigues F; Quadros HC; Mendes TMF; Nguewa P; Allegretti SM; Farias LP; Formiga FR Int J Pharm; 2023 May; 639():122965. PubMed ID: 37084836 [TBL] [Abstract][Full Text] [Related]
6. Sustained release ivermectin-loaded solid lipid dispersion for subcutaneous delivery: in vitro and in vivo evaluation. Lu M; Xiong D; Sun W; Yu T; Hu Z; Ding J; Cai Y; Yang S; Pan B Drug Deliv; 2017 Nov; 24(1):622-631. PubMed ID: 28282989 [TBL] [Abstract][Full Text] [Related]
7. Influence of excipients on characteristics and release profiles of poly(ε-caprolactone) microspheres containing immunoglobulin G. Erdemli Ö; Keskin D; Tezcaner A Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():391-9. PubMed ID: 25579939 [TBL] [Abstract][Full Text] [Related]
9. Influences of excipients on in vitro release and in vivo performance of tetanus toxoid loaded polymer particles. Katare YK; Panda AK Eur J Pharm Sci; 2006 Jun; 28(3):179-88. PubMed ID: 16517132 [TBL] [Abstract][Full Text] [Related]
10. Phase transfer and characterization of poly(epsilon-caprolactone) and poly(L-lactide) microspheres. Gadzinowski M; Slomkowski S; Elaïssari A; Pichot C J Biomater Sci Polym Ed; 2000; 11(5):459-80. PubMed ID: 10896042 [TBL] [Abstract][Full Text] [Related]
12. Spray-dried poly(D,L-lactide) microspheres containing carboplatin for veterinary use: in vitro and in vivo studies. Gavini E; Manunta L; Giua S; Achenza G; Giunchedi P AAPS PharmSciTech; 2005 Sep; 6(1):E108-14. PubMed ID: 16353954 [TBL] [Abstract][Full Text] [Related]
13. Protein bioactivity and polymer orientation is affected by stabilizer incorporation for double-walled microspheres. Kokai LE; Tan H; Jhunjhunwala S; Little SR; Frank JW; Marra KG J Control Release; 2010 Jan; 141(2):168-76. PubMed ID: 19751780 [TBL] [Abstract][Full Text] [Related]
14. Enhanced gastric tolerability and improved anti-obesity effect of capsaicinoids-loaded PCL microparticles. Almeida MA; Nadal JM; Grassiolli S; Paludo KS; Zawadzki SF; Cruz L; Paula JP; Farago PV Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():345-56. PubMed ID: 24857502 [TBL] [Abstract][Full Text] [Related]
15. Development and characterisation of polymeric microparticle of poly(d,l-lactic acid) loaded with holmium acetylacetonate. de Azevedo MBM; de Melo VHS; Soares CRJ; Miyamoto DM; Katayama RA; Squair PL; Barros CHN; Tasic L J Microencapsul; 2018 May; 35(3):281-291. PubMed ID: 29790801 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of spray drying as a method for polylactide and polylactide-co-glycolide microsphere preparation. Pavanetto F; Genta I; Giunchedi P; Conti B J Microencapsul; 1993; 10(4):487-97. PubMed ID: 8263677 [TBL] [Abstract][Full Text] [Related]