BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25701052)

  • 1. Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy.
    Moorthi RN; Fadel W; Eckert GJ; Ponsler-Sipes K; Moe SM; Lin C
    Osteoporos Int; 2015 Jun; 26(6):1801-7. PubMed ID: 25701052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marrow adiposity assessed on transiliac crest biopsy samples correlates with noninvasive measurement of marrow adiposity by proton magnetic resonance spectroscopy ((1)H-MRS) at the spine but not the femur.
    Cohen A; Shen W; Dempster DW; Zhou H; Recker RR; Lappe JM; Kepley A; Kamanda-Kosseh M; Bucovsky M; Stein EM; Nickolas TL; Shane E
    Osteoporos Int; 2015 Oct; 26(10):2471-8. PubMed ID: 25986383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaucher disease status and treatment assessment: pilot study using magnetic resonance spectroscopy bone marrow fat fractions in pediatric patients.
    Degnan AJ; Ho-Fung VM; Wang DJ; Ficicioglu C; Jaramillo D
    Clin Imaging; 2020 Jul; 63():1-6. PubMed ID: 32120306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of bone marrow fat by 3-Tesla magnetic resonance spectroscopy in patients with chronic kidney disease.
    Borelli C; Vergara D; Guglielmi R; Aucella F; Testini V; Guglielmi G
    Quant Imaging Med Surg; 2023 Nov; 13(11):7432-7443. PubMed ID: 37969637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus?
    Baum T; Yap SP; Karampinos DC; Nardo L; Kuo D; Burghardt AJ; Masharani UB; Schwartz AV; Li X; Link TM
    J Magn Reson Imaging; 2012 Jan; 35(1):117-24. PubMed ID: 22190287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone marrow fat content in 70 adolescent girls with anorexia nervosa: Magnetic resonance imaging and magnetic resonance spectroscopy assessment.
    Ecklund K; Vajapeyam S; Mulkern RV; Feldman HA; O'Donnell JM; DiVasta AD; Gordon CM
    Pediatr Radiol; 2017 Jul; 47(8):952-962. PubMed ID: 28432403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton density fat fraction MRI of vertebral bone marrow: Accuracy, repeatability, and reproducibility among readers, field strengths, and imaging platforms.
    Schmeel FC; Vomweg T; Träber F; Gerhards A; Enkirch SJ; Faron A; Sprinkart AM; Schmeel LC; Luetkens JA; Thomas D; Kukuk GM
    J Magn Reson Imaging; 2019 Dec; 50(6):1762-1772. PubMed ID: 30980694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of vertebral bone marrow fat assessed by 1H MRS and inphase and out-of-phase MRI among family members.
    Ojanen X; Borra RJ; Havu M; Cheng SM; Parkkola R; Nuutila P; Alen M; Cheng S
    Osteoporos Int; 2014 Feb; 25(2):653-62. PubMed ID: 23943163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy.
    Lee SH; Yoo HJ; Yu SM; Hong SH; Choi JY; Chae HD
    Korean J Radiol; 2019 Jan; 20(1):126-133. PubMed ID: 30627028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic Kidney Disease Is Associated With Greater Bone Marrow Adiposity.
    Woods GN; Ewing SK; Sigurdsson S; Kado DM; Ix JH; Hue TF; Eiriksdottir G; Xu K; Gudnason V; Lang TF; Vittinghoff E; Harris TB; Rosen CJ; Li X; Schwartz AV
    J Bone Miner Res; 2018 Dec; 33(12):2158-2164. PubMed ID: 30075054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The need for T₂ correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence.
    Dieckmeyer M; Ruschke S; Cordes C; Yap SP; Kooijman H; Hauner H; Rummeny EJ; Bauer JS; Baum T; Karampinos DC
    NMR Biomed; 2015 Apr; 28(4):432-9. PubMed ID: 25683154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females.
    Li G; Xu Z; Gu H; Li X; Yuan W; Chang S; Fan J; Calimente H; Hu J
    J Magn Reson Imaging; 2017 Jan; 45(1):66-73. PubMed ID: 27341545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy.
    Salas-Ramirez M; Tran-Gia J; Kesenheimer C; Weng AM; Kosmala A; Heidemeier A; Köstler H; Lassmann M
    Phys Med Biol; 2018 Jan; 63(2):025029. PubMed ID: 29130901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis.
    Li X; Kuo D; Schafer AL; Porzig A; Link TM; Black D; Schwartz AV
    J Magn Reson Imaging; 2011 Apr; 33(4):974-9. PubMed ID: 21448966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy.
    Griffith JF; Yeung DK; Antonio GE; Lee FK; Hong AW; Wong SY; Lau EM; Leung PC
    Radiology; 2005 Sep; 236(3):945-51. PubMed ID: 16055699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.
    Shen W; Gong X; Weiss J; Jin Y
    J Obes; 2013; 2013():298675. PubMed ID: 23606951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS.
    Karampinos DC; Melkus G; Baum T; Bauer JS; Rummeny EJ; Krug R
    Magn Reson Med; 2014 Mar; 71(3):1158-65. PubMed ID: 23657998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3T chemical shift-encoded MRI: Detection of altered proximal femur marrow adipose tissue composition in glucocorticoid users and validation with magnetic resonance spectroscopy.
    Martel D; Leporq B; Saxena A; Belmont HM; Turyan G; Honig S; Regatte RR; Chang G
    J Magn Reson Imaging; 2019 Aug; 50(2):490-496. PubMed ID: 30548522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender- and Age-Associated Differences in Bone Marrow Adipose Tissue and Bone Marrow Fat Unsaturation Throughout the Skeleton, Quantified Using Chemical Shift Encoding-Based Water-Fat MRI.
    Beekman KM; Regenboog M; Nederveen AJ; Bravenboer N; den Heijer M; Bisschop PH; Hollak CE; Akkerman EM; Maas M
    Front Endocrinol (Lausanne); 2022; 13():815835. PubMed ID: 35574007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADC Quantification of the Vertebral Bone Marrow Water Component: Removing the Confounding Effect of Residual Fat.
    Dieckmeyer M; Ruschke S; Eggers H; Kooijman H; Rummeny EJ; Kirschke JS; Baum T; Karampinos DC
    Magn Reson Med; 2017 Oct; 78(4):1432-1441. PubMed ID: 27851874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.